99 research outputs found

    Chronic itch development in sensory neurons requires BRAF signaling pathways

    Get PDF
    Chronic itch, or pruritus, is associated with a wide range of skin abnormalities. The mechanisms responsible for chronic itch induction and persistence remain unclear. We developed a mouse model in which a constitutively active form of the serine/threonine kinase BRAF was expressed in neurons gated by the sodium channel Nav1.8 (BRAF(Nav1.8) mice). We found that constitutive BRAF pathway activation in BRAF(Nav1.8) mice results in ectopic and enhanced expression of a cohort of itch-sensing genes, including gastrin-releasing peptide (GRP) and MAS-related GPCR member A3 (MRGPRA3), in nociceptors expressing transient receptor potential vanilloid 1 (TRPV1). BRAF(Nav1.8) mice showed de novo neuronal responsiveness to pruritogens, enhanced pruriceptor excitability, and heightened evoked and spontaneous scratching behavior. GRP receptor expression was increased in the spinal cord, indicating augmented coding capacity for itch subsequent to amplified pruriceptive inputs. Enhanced GRP expression and sustained ERK phosphorylation were observed in sensory neurons of mice with allergic contact dermatitis– or dry skin–elicited itch; however, spinal ERK activation was not required for maintaining central sensitization of itch. Inhibition of either BRAF or GRP signaling attenuated itch sensation in chronic itch mouse models. These data uncover RAF/MEK/ERK signaling as a key regulator that confers a subset of nociceptors with pruriceptive properties to initiate and maintain long-lasting itch sensation

    Notch Signaling Regulates Late-Stage Epidermal Differentiation and Maintains Postnatal Hair Cycle Homeostasis

    Get PDF
    Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis.We applied Cre/loxP system to generate conditional gene targeted mice that allow inactivation of critical components of Notch signaling pathway in the skin. Rbpj, the core component of all four Notch receptors, and Pofut1, an essential factor for ligand-receptor interactions, were inactivated in hair follicle lineages and suprabasal layer of the epidermis using the Tgfb3-Cre mouse line. Rbpj conditional inactivation resulted in granular parakeratosis and reactive epidermal hyperplasia. Pofut1 conditional inactivation led to ultrastructural abnormalities in the granular layer and altered filaggrin processing in the epidermis, suggesting a perturbation of the granular layer differentiation. Disruption of Pofut1 in hair follicle lineages resulted in aberrant telogen morphology, a decrease of bulge stem cell markers, and a concomitant increase of K14-positive keratinocytes in the isthmus of mutant hair follicles. Pofut1-deficent hair follicles displayed a delay in anagen re-entry and dysregulation of proliferation and apoptosis during the hair cycle transition. Moreover, increased DNA double stand breaks were detected in Pofut1-deficent hair follicles, and real time PCR analyses on bulge keratinocytes isolated by FACS revealed an induction of DNA damage response and a paucity of DNA repair machinery in mutant bulge keratinocytes.our data reveal a role for Notch signaling in regulating late-stage epidermal differentiation. Notch signaling is required for postnatal hair cycle homeostasis by maintaining proper proliferation and differentiation of hair follicle stem cells

    A phase i study of daily treatment with a ceramide-dominant triple lipid mixture commencing in neonates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Defects in skin barrier function are associated with an increase risk of eczema and atopic sensitisation. Ceramide-dominant triple lipid mixture may improve and maintain the infant skin barrier function, and if shown to be safe and feasible, may therefore offer an effective approach to reduce the incidence of eczema and subsequent atopic sensitisation. We sort to assess the safety and compliance with daily application of a ceramide-dominant triple lipid formula (EpiCeram™) commencing in the neonatal period for the prevention of eczema.</p> <p>Methods</p> <p>Ten infants (0-4 weeks of age) with a family history of allergic disease were recruited into an open-label, phase one trial of daily application of EpiCeram™ for six weeks. The primary outcomes were rate of compliance and adverse events. Data on development of eczema, and physiological properties of the skin (transepidermal water loss, hydration, and surface pH) were also measured.</p> <p>Results</p> <p>Eighty percent (8/10) of mothers applied the study cream on 80% or more of days during the six week intervention period. Though a number of adverse events unrelated to study product were reported, there were no adverse skin reactions to the study cream.</p> <p>Conclusions</p> <p>These preliminary results support the safety and parental compliance with daily applications of a ceramide-dominant formula for the prevention of eczema, providing the necessary ground work for a randomised clinical trial to evaluate EpiCeram™ for the prevention of eczema.</p> <p>Trial registration</p> <p>The study was listed at the Australian/New Zealand Clinical Trial Registry (ANZCTR): reg. no. <a href="http://www.anzctr.org.au/ACTRN12609000727246.aspx">ACTRN12609000727246</a>.</p

    Genomic landscape and clonal architecture of mouse oral squamous cell carcinomas dictate tumour ecology.

    Get PDF
    To establish whether 4-nitroquinoline N-oxide-induced carcinogenesis mirrors the heterogeneity of human oral squamous cell carcinoma (OSCC), we have performed genomic analysis of mouse tongue lesions. The mutational signatures of human and mouse OSCC overlap extensively. Mutational burden is higher in moderate dysplasias and invasive SCCs than in hyperplasias and mild dysplasias, although mutations in p53, Notch1 and Fat1 occur in early lesions. Laminin-α3 mutations are associated with tumour invasiveness and Notch1 mutant tumours have an increased immune infiltrate. Computational modelling of clonal dynamics indicates that high genetic heterogeneity may be a feature of those mild dysplasias that are likely to progress to more aggressive tumours. These studies provide a foundation for exploring OSCC evolution, heterogeneity and progression

    Physiological Notch Signaling Maintains Bone Homeostasis via RBPjk and Hey Upstream of NFATc1

    Get PDF
    Notch signaling between neighboring cells controls many cell fate decisions in metazoans both during embryogenesis and in postnatal life. Previously, we uncovered a critical role for physiological Notch signaling in suppressing osteoblast differentiation in vivo. However, the contribution of individual Notch receptors and the downstream signaling mechanism have not been elucidated. Here we report that removal of Notch2, but not Notch1, from the embryonic limb mesenchyme markedly increased trabecular bone mass in adolescent mice. Deletion of the transcription factor RBPjk, a mediator of all canonical Notch signaling, in the mesenchymal progenitors but not the more mature osteoblast-lineage cells, caused a dramatic high-bone-mass phenotype characterized by increased osteoblast numbers, diminished bone marrow mesenchymal progenitor pool, and rapid age-dependent bone loss. Moreover, mice deficient in Hey1 and HeyL, two target genes of Notch-RBPjk signaling, exhibited high bone mass. Interestingly, Hey1 bound to and suppressed the NFATc1 promoter, and RBPjk deletion increased NFATc1 expression in bone. Finally, pharmacological inhibition of NFAT alleviated the high-bone-mass phenotype caused by RBPjk deletion. Thus, Notch-RBPjk signaling functions in part through Hey1-mediated inhibition of NFATc1 to suppress osteoblastogenesis, contributing to bone homeostasis in vivo

    Notch and Senescence.

    Get PDF
    Cellular senescence, previously thought of as an autonomous tumour suppressor mechanism, is emerging as a phenotype and effector present throughout the life of an organism from embryogenesis to senile decline. Senescent cells have powerful non-autonomous effects upon multiple players within their microenvironment mainly through their secretory phenotype. How senescent cells co-ordinate numerous, sometimes functionally contrasting outputs through their secretome had previously been unclear. The Notch pathway, originally identified for its involvement in Drosophila wing development, has more recently been found to underpin diverse effects in human cancer. Here we discuss recent findings that suggest that Notch is intimately involved in the development of senescence and how it acts to co-ordinate the composition and functional effects of the senescence secretome. We also highlight the complex physical and functional interplay between Notch and p53, critical to both senescence and cancer. Understanding the interplay between Notch, p53 and senescence could allow us develop the therapeutics of the future for cancer and ageing

    Biology of human hair: Know your hair to control it

    Get PDF
    Hair can be engineered at different levels—its structure and surface—through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization

    Impact of route and adequacy of nutritional intake on outcomes of allogeneic haematopoietic cell transplantation for haematologic malignancies.

    Get PDF
    BACKGROUND: Allogeneic haematopoietic cell transplantation (HCT) is often associated with poor oral intake due to painful mucositis and gastrointestinal sequalae that occur following a preparative regimen of intensive chemotherapy and/or total body radiation. Although attractive to assume that optimal nutrition improves HCT outcomes, there are limited data to support this. It is also unclear whether artificial nutrition support should be provided as enteral tube feeding or parenteral nutrition (PN). METHODS: We analysed day-100 non-relapse mortality (NRM), incidence of acute graft-versus-host disease (GvHD), acute gastrointestinal GvHD, 5-year survival and GvHD-free/relapse-free survival (GRFS) according to both route and adequacy of nutritional intake prior to neutrophil engraftment, together with other known prognostic factors, in a retrospective cohort of 484 patients who underwent allogeneic HCT for haematologic malignancy between 2000 and 2014. RESULTS: Multivariate analyses showed increased NRM with inadequate nutrition (hazard ratio (HR) 4.1; 95% confidence interval (CI) 2.2-7.2) and adequate PN (HR 2.9; 95% CI 1.6-5.4) compared to adequate enteral nutrition (EN) both P < .001. There were increased incidences of gastrointestinal GvHD of any stage and all GvHD ≥ grade 2 in patients who received PN (odds ratio (OR) 2.0; 95% CI 1.2-3.3; P = .006, and OR 1.8; 95% CI 1.1-3.0; P = .018, respectively), compared to adequate EN. Patients who received adequate PN and inadequate nutrition also had reduced probabilities of survival and GRFS at 5 years. CONCLUSION: Adequate EN during the early transplantation course is associated with reduced NRM, improved survival and GRFS at 5 years. Furthermore, adequate EN is associated with lower incidence of overall and gut acute GvHD than PN, perhaps because of its ability to maintain mucosal integrity, modulate the immune response to intensive chemo/radiotherapy and support the gastrointestinal tract environment, including gut microflora
    corecore