4,209 research outputs found
The 2.5-5.0 micron spectra of Io: Evidence for H2S and H2O frozen in SO2
The techniques of low temperature spectroscopy are applied to identify the constituents of the ices covering the surface of Io, a satellite of Jupiter. Infrared spectra of Io in the 4000-2000 cm exp -1 region, including new observational data, are analyzed using laboratory studies of plausible surface ices
Visible photodissociation spectroscopy of PAH cations and derivatives in the PIRENEA experiment
The electronic spectra of gas-phase cationic polycyclic aromatic hydrocarbons
(PAHs), trapped in the Fourier Transform Ion Cyclotron Resonance cell of the
PIRENEA experiment, have been measured by multiphoton dissociation spectroscopy
in the 430-480 nm spectral range using the radiation of a mid-band optical
parametric oscillator laser. We present here the spectra recorded for different
species of increasing size, namely the pyrene cation (C16H10+), the
1-methylpyrene cation (CH3-C16H9+), the coronene cation (C24H12+), and its
dehydrogenated derivative C24H10+. The experimental results are interpreted
with the help of time-dependent density functional theory calculations and
analysed using spectral information on the same species obtained from matrix
isolation spectroscopy data. A kinetic Monte Carlo code has also been used, in
the case of pyrene and coronene cations, to estimate the absorption
cross-sections of the measured electronic transitions. Gas-phase spectra of
highly reactive species such as dehydrogenated PAH cations are reported for the
first time
Stress corrosion in titanium alloys and other metallic materials
Multiple physical and chemical techniques including mass spectroscopy, atomic absorption spectroscopy, gas chromatography, electron microscopy, optical microscopy, electronic spectroscopy for chemical analysis (ESCA), infrared spectroscopy, nuclear magnetic resonance (NMR), X-ray analysis, conductivity, and isotopic labeling were used in investigating the atomic interactions between organic environments and titanium and titanium oxide surfaces. Key anhydrous environments studied included alcohols, which contain hydrogen; carbon tetrachloride, which does not contain hydrogen; and mixtures of alcohols and halocarbons. Effects of dissolved salts in alcohols were also studied. This program emphasized experiments designed to delineate the conditions necessary rather than sufficient for initiation processes and for propagation processes in Ti SCC
Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data
The Changjiang (Yangtze) estuarine and coastal waters are characterized by suspended sediments over a wide range of concentrations from 20 to 2,500 mg l-1. Suspended sediment plays important roles in the estuarine and coastal system and environment. Previous algorithms for satellite estimates of suspended sediment concentration (SSC) showed a great limitation in that only low to moderate concentrations (up to 50 mg l-1) could be reliably estimated. In this study, we developed a semi-empirical radiative transfer (SERT) model with physically based empirical coefficients to estimate SSC from MERIS data over turbid waters with a much wider range of SSC. The model was based on the Kubelka–Munk two-stream approximation of radiative transfer theory and calibrated using datasets from in situ measurements and outdoor controlled tank experiments. The results show that the sensitivity and saturation level of remote-sensing reflectance to SSC are dependent on wavelengths and SSC levels. Therefore, the SERT model, coupled with a multi-conditional algorithm scheme adapted to satellite retrieval of wide-range SSC, was proposed. Results suggest that this method is more effective and accurate in the estimation of SSC over turbid water
The optical spectrum of a large isolated polycyclic aromatic hydrocarbon: hexa-peri-hexabenzocoronene, C42H18
The first optical spectrum of an isolated polycyclic aromatic hydrocarbon
large enough to survive the photophysical conditions of the interstellar medium
is reported. Vibronic bands of the first electronic transition of the all
benzenoid polycyclic aromatic hydrocarbon hexa-peri-hexabenzocoronene were
observed in the 4080-4530 Angstrom range by resonant 2-color 2-photon
ionization spectroscopy. The strongest feature at 4264 Angstrom is estimated to
have an oscillator strength of f=1.4x10^-3, placing an upper limit on the
interstellar abundance of this polycyclic aromatic hydrocarbon at 4x10^12
cm^-2, accounting for a maximum of ~0.02% of interstellar carbon. This study
opens up the possibility to rigorously test neutral polycyclic aromatic
hydrocarbons as carriers of the diffuse interstellar bands in the near future.Comment: 9 pages, 1 figure. Fixed a typo on the frequency of the 'b' ban
The Role of Polycyclic Aromatic Hydrocarbons in Ultraviolet Extinction. I. Probing small molecular PAHs
We have obtained new STIS/HST spectra to search for structure in the
ultraviolet interstellar extinction curve, with particular emphasis on a search
for absorption features produced by polycyclic aromatic hydrocarbons (PAHs).
The presence of these molecules in the interstellar medium has been postulated
to explain the infrared emission features seen in the 3-13 m spectra of
numerous sources. UV spectra are uniquely capable of identifying specific PAH
molecules. We obtained high S/N UV spectra of stars which are significantly
more reddened than those observed in previous studies. These data put limits on
the role of small (30-50 carbon atoms) PAHs in UV extinction and call for
further observations to probe the role of larger PAHs. PAHs are of importance
because of their ubiquity and high abundance inferred from the infrared data
and also because they may link the molecular and dust phases of the
interstellar medium. A presence or absence of ultraviolet absorption bands due
to PAHs could be a definitive test of this hypothesis. We should be able to
detect a 20 \AA wide feature down to a 3 limit of 0.02 A. No
such absorption features are seen other than the well-known 2175 \AA bump.Comment: 16 pages, 3 figure, ApJ in pres
Collective magnetism at multiferroic vortex domain walls
Topological defects have been playgrounds for many emergent phenomena in
complex matter such as superfluids, liquid crystals, and early universe.
Recently, vortex-like topological defects with six interlocked structural
antiphase and ferroelectric domains merging into a vortex core were revealed in
multiferroic hexagonal manganites. Numerous vortices are found to form an
intriguing self-organized network. Thus, it is imperative to find out the
magnetic nature of these vortices. Using cryogenic magnetic force microscopy,
we discovered unprecedented alternating net moments at domain walls around
vortices that can correlate over the entire vortex network in hexagonal ErMnO3
The collective nature of domain wall magnetism originates from the
uncompensated Er3+ moments and the correlated organization of the vortex
network. Furthermore, our proposed model indicates a fascinating phenomenon of
field-controllable spin chirality. Our results demonstrate a new route to
achieving magnetoelectric coupling at domain walls in single-phase
multiferroics, which may be harnessed for nanoscale multifunctional devices.Comment: 18 pages, 10 figure
Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.
Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed
Expression and DNA methylation of TNF, IFNG and FOXP3 in colorectal cancer and their prognostic significance.
BACKGROUND: Colorectal cancer (CRC) progression is associated with suppression of host cell-mediated immunity and local immune escape mechanisms. Our aim was to assess the immune function in terms of expression of TNF, IFNG and FOXP3 in CRC.
METHODS: Sixty patients with CRC and 15 matched controls were recruited. TaqMan quantitative PCR and methylation-specific PCR was performed for expression and DNA methylation analysis of TNF, IFNG and FOXP3. Survival analysis was performed over a median follow-up of 48 months.
RESULTS: TNF was suppressed in tumour and IFNG was suppressed in peripheral blood mononuclear cells (PBMCs) of patients with CRC. Tumours showed enhanced expression of FOXP3 and was significantly higher when tumour size was >38 mm (median tumour size; P=0.006, Mann-Whitney U-test). Peripheral blood mononuclear cell IFNG was suppressed in recurrent CRC (P=0.01). Methylated TNFpromoter (P=0.003) and TNFexon1 (P=0.001) were associated with significant suppression of TNF in tumours. Methylated FOXP3cpg was associated with significant suppression of FOXP3 in both PBMC (P=0.018) and tumours (P=0.010). Reduced PBMC FOXP3 expression was associated with significantly worse overall survival (HR=8.319, P=0.019).
CONCLUSIONS: We have detected changes in the expression of immunomodulatory genes that could act as biomarkers for prognosis and future immunotherapeutic strategies
Quantum State Diffusion, Density Matrix Diagonalization and Decoherent Histories: A Model
We analyse the quantum evolution of a particle moving in a potential in
interaction with an environment of harmonic oscillators in a thermal state,
using the quantum state diffusion (QSD) picture of Gisin and Percival, in which
one associates the usual Markovian master equation for the density operator
with a class of stochastic non-linear Schr\"odinger equations. We find
stationary solutions to the Ito equation which are Gaussians, localized around
a point in phase space undergoing classical Brownian motion. We show that every
initial state approaches these stationary solutions in the long time limit. We
recover the density operator corresponding to these solutions, and thus show,
for this particular model, that the QSD picture effectively supplies a
prescription for approximately diagonalizing the density operator in a basis of
phase space localized states. The rate of localization is related to the
decoherence time, and also to the timescale on which thermal and quantum
fluctuations become comparable. We use these results to exemplify the general
connection between the QSD picture and the decoherent histories approach.Comment: 32 pages, plain Tex
- …
