196 research outputs found

    POINTS CLASSIFICATION BY A SEQUENTIAL HIGHER - ORDER MOMENTS STATISTICAL ANALYSIS OF LIDAR DATA

    Get PDF
    The paper deals with a new sequential procedure to perform unsupervised LIDAR points classification by iteratively studying skewness and kurtosis for elevation and intensity point distribution values. After a preliminary local shape analysis of elevation and intensity point distributions, carried out from the original discrete frequencies by a non parametric estimation of the density functions, the procedure starts by choosing the category of data (elevation or intensity) to analyse at first: the choice falls on the category better showing by a testing procedure a bi or a multi clustering distribution. The first point cluster is identified by studying the distribution skewness and kurtosis variations, after removing at each step the largest data values. The selected cluster is furthermore analysed by studying higher order moments behaviour of the complementary data category. This makes possible to find out potential sub clusters of the original selected one, permitting, in this way, a more effective point classification. Successive clusters are identified by applying the same iterative procedure to the still unclassified LIDAR points. For complex point distribution shapes or for the classification of large areas, a progressive analysis method, based on the partition of the entire data set into regular subsets, is proposed. Some real numerical experiments confirm the capability of the method proposed. The classification total errors in the experiments range from a minimum value of 1,2% to a maximum value of 8,9%

    Photogrammetric 3D building reconstruction from thermal images

    Get PDF
    5This paper addresses the problem of 3D building reconstruction from thermal infrared (TIR) images. We show that a commercial Computer Vision software can be used to automatically orient sequences of TIR images taken from an Unmanned Aerial Vehicle (UAV) and to generate 3D point clouds, without requiring any GNSS/INS data about position and attitude of the images nor camera calibration parameters. Moreover, we propose a procedure based on Iterative Closest Point (ICP) algorithm to create a model that combines high resolution and geometric accuracy of RGB images with the thermal information deriving from TIR images. The process can be carried out entirely by the aforesaid software in a simple and efficient way.openopenMaset, Eleonora; Fusiello, Andrea; Crosilla, Fabio; Toldo, R.; Zorzetto, D.Maset, Eleonora; Fusiello, Andrea; Crosilla, Fabio; Toldo, R.; Zorzetto, D

    INVESTIGATING THE PERFORMANCE OF A HANDHELD MOBILE MAPPING SYSTEM IN DIFFERENT OUTDOOR SCENARIOS

    Get PDF
    In recent years, portable Mobile Mapping Systems (MMSs) are emerging as valuable survey instruments for fast and efficient mapping of both internal and external environments. The aim of this work is to assess the performance of a commercial handheld MMS, Gexcel HERON Lite, in two different outdoor applications. The first is the mapping of a large building, which represents a standard use-case scenario of this technology. Through the second case study, that consists in the survey of a torrent reach, we investigate instead the applicability of the handheld MMS for natural environment monitoring, a field in which portable systems are not yet widely employed. Quantitative and qualitative assessment is presented, comparing the point clouds obtained from the HERON Lite system against reference models provided by traditional techniques (i.e., Terrestrial Laser Scanning and Photogrammetry)
    corecore