524 research outputs found

    Inhibition of I kappa B Kinase Attenuates the Organ Injury and Dysfunction Associated with Hemorrhagic Shock

    Get PDF
    R Sordi is supported by the program Science without Borders, CAPES Foundation, Ministry of Education of Brazil, Brasilia/DF, Brazil; NSA Patel is, in part, supported by the Bart’s and The LondonCharity (753/1722). The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union′s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° 608765, from the William Harvey Research Foundation and University of Turin (Ricerca Locale ex-60%). This work contributes to the Organ Protection research theme of the Barts Centre for Trauma Sciences, supported by the Barts and The London Charity (Award 753/1722) and forms part of the research themes contributing to the translational research portfolio of Barts and the London Cardiovascular Biomedical Research Unit, which is supported and funded by the National Institute of Health Researc

    Circadian and Feeding Rhythms Orchestrate the Diurnal Liver Acetylome.

    Get PDF
    Lysine acetylation is involved in various biological processes and is considered a key reversible post-translational modification in the regulation of gene expression, enzyme activity, and subcellular localization. This post-translational modification is therefore highly relevant in the context of circadian biology, but its characterization on the proteome-wide scale and its circadian clock dependence are still poorly described. Here, we provide a comprehensive and rhythmic acetylome map of the mouse liver. Rhythmic acetylated proteins showed subcellular localization-specific phases that correlated with the related metabolites in the regulated pathways. Mitochondrial proteins were over-represented among the rhythmically acetylated proteins and were highly correlated with SIRT3-dependent deacetylation. SIRT3 activity being nicotinamide adenine dinucleotide (NAD) <sup>+</sup> level-dependent, we show that NAD <sup>+</sup> is orchestrated by both feeding rhythms and the circadian clock through the NAD <sup>+</sup> salvage pathway but also via the nicotinamide riboside pathway. Hence, the diurnal acetylome relies on a functional circadian clock and affects important diurnal metabolic pathways in the mouse liver
    corecore