1,910 research outputs found

    Supersymmetric Mean-Field Theory of t-J Model

    Full text link
    The supersymmetric formulation of t-J model is studied in this paper at the mean-field level where δ\delta-T phase diagram is computed. We find that slave-fermion-like spiral phase is stable at low doping concentration, and the slave-boson-like d-wave fermionic spin pairing state becomes energetically favourable when δ≥\delta\geq 0.23. An improvement in free energy using Gutzwiller's method lowers the transition doping concentration to 0.06. We also point out the existence of new branches of excitations in the supersymmetric theory.Comment: 11 pages and 2 figure

    Pairing Symmetry in the Anisotropic Fermi Superfluid under p-wave Feshbach Resonance

    Full text link
    The anisotropic Fermi superfluid of ultra-cold Fermi atoms under the p-wave Feshbach resonance is studied theoretically. The pairing symmetry of the ground state is determined by the strength of the atom-atom magnetic dipole interaction. It is kzk_z for a strong dipole interaction; while it becomes kz−iβkyk_z - i \beta k_y, up to a rotation about z, for a weak one (Here β\beta < 1 is a numerical coefficient). By changing the external magnetic field or the atomic gas density, a phase transition between these two states can be driven. We discuss how the pairing symmetry of the ground state can be determined in the time-of-flight experiments.Comment: 12 pages, 7 figure

    Automatically extracted Antarctic coastline using remotely-sensed data: an update

    Get PDF
    The temporal and spatial variability of the Antarctic coastline is a clear indicator of change in extent and mass balance of ice sheets and shelves. In this study, the Canny edge detector was utilized to automatically extract high-resolution information of the Antarctic coastline for 2005, 2010, and 2017, based on optical and microwave satellite data. In order to improve the accuracy of the extracted coastlines, we developed the Canny algorithm by automatically calculating the local low and high thresholds via the intensity histogram of each image to derive thresholds to distinguish ice sheet from water. A visual comparison between extracted coastlines and mosaics from remote sensing images shows good agreement. In addition, comparing manually extracted coastline, based on prior knowledge, the accuracy of planimetric position of automated extraction is better than two pixels of Landsat images (30 m resolution). Our study shows that the percentage of deviation (7 km2 (2005) to 1.3537 × 107 km2 (2010) and 1.3657 × 107 km2 (2017). We have found that the decline of the Antarctic area between 2005 and 2010 is related to the breakup of some individual ice shelves, mainly in the Antarctic Peninsula and off East Antarctica. We present a detailed analysis of the temporal and spatial change of coastline and area change for the six ice shelves that exhibited the largest change in the last decade. The largest area change (a loss of 4836 km2) occurred at the Wilkins Ice Shelf between 2005 and 2010

    Nonperturbative Determination of Heavy Meson Bound States

    Get PDF
    In this paper we obtain a heavy meson bound state equation from the heavy quark equation of motion in heavy quark effective theory (HQET) and the heavy meson effective field theory we developed very recently. The bound state equation is a covariant extention of the light-front bound state equation for heavy mesons derived from light-front QCD and HQET. We determine the covariant heavy meson wave function variationally by minimizing the binding energy Λˉ\bar{\Lambda}. Subsequently the other basic HQET parameters λ1\lambda_1 and λ2\lambda_2, and the heavy quark masses mbm_b and mcm_c can also be consistently determined.Comment: 15 pages, 1 figur

    POINeT: protein interactome with sub-network analysis and hub prioritization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interactions (PPIs) are critical to every aspect of biological processes. Expansion of all PPIs from a set of given queries often results in a complex PPI network lacking spatiotemporal consideration. Moreover, the reliability of available PPI resources, which consist of low- and high-throughput data, for network construction remains a significant challenge. Even though a number of software tools are available to facilitate PPI network analysis, an integrated tool is crucial to alleviate the burden on querying across multiple web servers and software tools.</p> <p>Results</p> <p>We have constructed an integrated web service, POINeT, to simplify the process of PPI searching, analysis, and visualization. POINeT merges PPI and tissue-specific expression data from multiple resources. The tissue-specific PPIs and the numbers of research papers supporting the PPIs can be filtered with user-adjustable threshold values and are dynamically updated in the viewer. The network constructed in POINeT can be readily analyzed with, for example, the built-in centrality calculation module and an integrated network viewer. Nodes in global networks can also be ranked and filtered using various network analysis formulas, i.e., centralities. To prioritize the sub-network, we developed a ranking filtered method (S3) to uncover potential novel mediators in the midbody network. Several examples are provided to illustrate the functionality of POINeT. The network constructed from four schizophrenia risk markers suggests that EXOC4 might be a novel marker for this disease. Finally, a liver-specific PPI network has been filtered with adult and fetal liver expression profiles.</p> <p>Conclusion</p> <p>The functionalities provided by POINeT are highly improved compared to previous version of POINT. POINeT enables the identification and ranking of potential novel genes involved in a sub-network. Combining with tissue-specific gene expression profiles, PPIs specific to selected tissues can be revealed. The straightforward interface of POINeT makes PPI search and analysis just a few clicks away. The modular design permits further functional enhancement without hampering the simplicity. POINeT is available at <url>http://poinet.bioinformatics.tw/</url>.</p

    Spectrum of the Vortex Bound States of the Dirac and Schrodinger Hamiltonian in the presence of Superconducting Gaps

    Full text link
    We investigate the vortex bound states both Schrodinger and Dirac Hamiltonian with the s-wave superconducting pairing gap by solving the mean-field Bogoliubov-de-Gennes equations. The exact vortex bound states spectrum is numerically determined by the integration method, and also accompanied by the quasi-classical analysis. It is found that the bound state energies is proportional to the vortex angular momentum when the chemical potential is large enough. By applying the external magnetic field, the vortex bound state energies of the Dirac Hamiltonian are almost unchanged; whereas the energy shift of the Schrodinger Hamiltonian is proportional to the magnetic field. These qualitative differences may serve as an indirect evidence of the existence of Majorana fermions in which the zero mode exists in the case of the Dirac Hamiltonian only.Comment: 8 pages, 9 figure

    Mars Science Helicopter Conceptual Design

    Get PDF
    Robotic planetary aerial vehicles increase the range of terrain that can be examined, compared to traditional landers and rovers, and have more near-surface capability than orbiters. Aerial mobility is a promising possibility for planetary exploration as it reduces the challenges that difficult obstacles pose to ground vehicles. The first use of a rotorcraft for a planetary mission will be in 2021, when the Mars Helicopter technology demonstrator will be deployed from the Mars 2020 rover. The Jet Propulsion Laboratory and NASA Ames Research Center are exploring possibilities for a Mars Science Helicopter, a second-generation Mars rotorcraft with the capability of conducting science investigations independently of a lander or rover (although this type of vehicle could also be used assist rovers or landers in future missions). This report describes the conceptual design of Mars Science Helicopters. The design process began with coaxial-helicopter and hexacopter configurations, with a payload in the range of two to three kilograms and an overall vehicle mass of approximately twenty kilograms. Initial estimates of weight and performance were based on the capabilities of the Mars Helicopter. Rotorcraft designs for Mars are constrained by the dimensions of the aeroshell for the trip to the planet, requiring attention to the aircraft packaging in order to maximize the rotor dimensions and hence overall performance potential. Aerodynamic performance optimization was conducted, particularly through airfoils designed specifically for the low Reynolds number and high Mach number inherent in operation on Mars. The final designs show a substantial capability for science operations on Mars: a 31 kg hexacopter that fits within a 2.5 m diameter aeroshell could carry a 5 kg payload for 10 min of hover time or over a range of 5 km

    Effective Lagrangian Approach to Weak Radiative Decays of Heavy Hadrons

    Full text link
    Motivated by the observation of the decay Bˉ→Kˉ∗γ\bar{B}\to \bar{K}^*\gamma by CLEO, we have systematically analyzed the two-body weak radiative decays of bottom and charmed hadrons. There exist two types of weak radiative decays: One proceeds through the short-distance b→sγb\to s\gamma transition and the other occurs through WW-exchange accompanied by a photon emission. Effective Lagrangians are derived for the WW-exchange bremsstrahlung processes at the quark level and then applied to various weak electromagnetic decays of heavy hadrons. Predictions for the branching ratios of Bˉ0→D∗0γ, Λb0→Σc0γ, Ξb0→Ξc0γ\bar{B}^0\to D^{*0} \gamma,~\Lambda_b^0\to\Sigma_c^0\gamma,~\Xi_b^0\to \Xi_c^0\gamma and \Xi_b^0\to\xip_c^0\gamma are given. In particular, we found B(Bˉ0→D∗0γ)≈0.9×10−6{\cal B}(\bar{B}^0 \to D^{*0}\gamma)\approx 0.9\times 10^{-6}. Order of magnitude estimates for the weak radiative decays of charmed hadrons:  D0→Kˉ∗0γ, Λc+→Σ+γ~D^0\to \bar{K}^{*0}\gamma,~\Lambda_c^+\to\Sigma^+\gamma and Ξc0→Ξ0γ\Xi_c^0\to\Xi^0\gamma are also presented. Within this approach, the decay asymmetry for antitriplet to antitriplet heavy baryon weak radiative transitions is uniquely predicted by heavy quark symmetry. The electromagnetic penguin contribution to Λb0→Λγ\Lambda_b^0\to\Lambda\gamma is estimated by two different methods and its branching ratio is found to be of order 1×10−51\times 10^{-5}. We conclude that weak radiative decays of bottom hadrons are dominated by the short-distance b→sγb\to s\gamma mechanism.Comment: 28 pages + 3 figures (not included), CLNS 94/1278, IP-ASTP-04-94. [Main changes in this revised version: (i) Sect 2 and subsection 4.1 are revised, (ii) A MIT bag method for calculating the decay rate of Lambdab→Λ+gammaLambda_b \to\Lambda+gamma is presented, (iii) All predictions are updated using the newly available 1994 Particle Data Group, and (iv) Appendix and subsections 3.3 and 4.4 are deleted.
    • …
    corecore