5,950 research outputs found
Dynamical phenomena in Fibonacci Semiconductor Superlattices
We present a detailed study of the dynamics of electronic wavepackets in
Fibonacci semiconductor superlattices, both in flat band conditions and subject
to homogeneous electric fields perpendicular to the layers. Coherent
propagation of electrons is described by means of a scalar Hamiltonian using
the effective-mass approximation. We have found that an initial Gaussian
wavepacket is filtered selectively when passing through the superlattice. This
means that only those components of the wavepacket whose wavenumber belong to
allowed subminibands of the fractal-like energy spectrum can propagate over the
entire superlattice. The Fourier pattern of the transmitted part of the
wavepacket presents clear evidences of fractality reproducing those of the
underlying energy spectrum. This phenomenon persists even in the presence of
unintentional disorder due to growth imperfections. Finally, we have
demonstrated that periodic coherent-field induced oscillations (Bloch
oscillations), which we are able to observe in our simulations of periodic
superlattices, are replaced in Fibonacci superlattices by more complex
oscillations displaying quasiperiodic signatures, thus sheding more light onto
the very peculiar nature of the electronic states in these systems.Comment: 7 pagex, RevTex, 5 Postscript figures. Physical Review B (in press
Trapped Rydberg Ions: From Spin Chains to Fast Quantum Gates
We study the dynamics of Rydberg ions trapped in a linear Paul trap, and
discuss the properties of ionic Rydberg states in the presence of the static
and time-dependent electric fields constituting the trap. The interactions in a
system of many ions are investigated and coupled equations of the internal
electronic states and the external oscillator modes of a linear ion chain are
derived. We show that strong dipole-dipole interactions among the ions can be
achieved by microwave dressing fields. Using low-angular momentum states with
large quantum defect the internal dynamics can be mapped onto an effective spin
model of a pair of dressed Rydberg states that describes the dynamics of
Rydberg excitations in the ion crystal. We demonstrate that excitation transfer
through the ion chain can be achieved on a nanosecond timescale and discuss the
implementation of a fast two-qubit gate in the ion chain.Comment: 26 pages, 9 figure
Classical and Quantum Systems: Alternative Hamiltonian Descriptions
In complete analogy with the classical situation (which is briefly reviewed)
it is possible to define bi-Hamiltonian descriptions for Quantum systems. We
also analyze compatible Hermitian structures in full analogy with compatible
Poisson structures.Comment: To appear on Theor. Math. Phy
A general T-matrix approach applied to two-body and three-body problems in cold atomic gases
We propose a systematic T-matrix approach to solve few-body problems with
s-wave contact interactions in ultracold atomic gases. The problem is generally
reduced to a matrix equation expanded by a set of orthogonal molecular states,
describing external center-of-mass motions of pairs of interacting particles;
while each matrix element is guaranteed to be finite by a proper
renormalization for internal relative motions. This approach is able to
incorporate various scattering problems and the calculations of related
physical quantities in a single framework, and also provides a physically
transparent way to understand the mechanism of resonance scattering. For
applications, we study two-body effective scattering in 2D-3D mixed dimensions,
where the resonance position and width are determined with high precision from
only a few number of matrix elements. We also study three fermions in a
(rotating) harmonic trap, where exotic scattering properties in terms of mass
ratios and angular momenta are uniquely identified in the framework of
T-matrix.Comment: 14 pages, 4 figure
Hydrodynamic behavior in expanding thermal clouds of Rb-87
We study hydrodynamic behavior in expanding thermal clouds of Rb-87 released
from an elongated trap. At our highest densities the mean free path is smaller
than the radial size of the cloud. After release the clouds expand
anisotropically. The cloud temperature drops by as much as 30%. This is
attributed to isentropic cooling during the early stages of the expansion. We
present an analytical model to describe the expansion and to estimate the
cooling. Important consequences for time-of-flight thermometry are discussed.Comment: 7 pages with 2 figure
Meson Form Factors and Non-Perturbative Gluon Propagators
The meson (pion and kaon) form factor is calculated in the perturbative
framework with alternative forms for the running coupling constant and the
gluon propagator in the infrared kinematic region. These modified forms are
employed to test the sensibility of the meson form factor to the
nonperturbative contributions. Its is a powerful discriminating quantity and
the results obtained with a particular choice of modified running coupling
constant and gluon propagator have a good agreement with the available data,
for both mesons, indicating the robustness of the method of calculation.
Nevertheless, nonperturbative aspects may be included in the perturbative
framework of calculation of exclusive processes.Comment: 18 pages, 7 figures. Discutions added, clarifing figures. Accepted to
be published in Phys. Rev.
Formulae for zero-temperature conductance through a region with interaction
The zero-temperature linear response conductance through an interacting
mesoscopic region attached to noninteracting leads is investigated. We present
a set of formulae expressing the conductance in terms of the ground-state
energy or persistent currents in an auxiliary system, namely a ring threaded by
a magnetic flux and containing the correlated electron region. We first derive
the conductance formulae for the noninteracting case and then give arguments
why the formalism is also correct in the interacting case if the ground state
of a system exhibits Fermi liquid properties. We prove that in such systems,
the ground-state energy is a universal function of the magnetic flux, where the
conductance is the only parameter. The method is tested by comparing its
predictions with exact results and results of other methods for problems such
as the transport through single and double quantum dots containing interacting
electrons. The comparisons show an excellent quantitative agreement.Comment: 18 pages, 18 figures; to appear in Phys. Rev.
Graviton Resonances in E+ E- -> MU+ MU- at Linear Colliders with Beamstrahlung and ISR Effects
Electromagnetic radiation emitted by the colliding beams is expected to play
an important role at the next generation of high energy e^+ e^- linear
collider(s). Focusing on the simplest process e+e- -> mu+ mu-, we show that
radiative effects like initial state radiation (ISR) and beamstrahlung can lead
to greatly-enhanced signals for resonant graviton modes of the Randall-Sundrum
model.Comment: 20 pages Latex, 7 eps figure
Analytic properties of the Landau gauge gluon and quark propagators
We explore the analytic structure of the gluon and quark propagators of
Landau gauge QCD from numerical solutions of the coupled system of renormalized
Dyson--Schwinger equations and from fits to lattice data. We find sizable
negative norm contributions in the transverse gluon propagator indicating the
absence of the transverse gluon from the physical spectrum. A simple analytic
structure for the gluon propagator is proposed. For the quark propagator we
find evidence for a mass-like singularity on the real timelike momentum axis,
with a mass of 350 to 500 MeV. Within the employed Green's functions approach
we identify a crucial term in the quark-gluon vertex that leads to a positive
definite Schwinger function for the quark propagator.Comment: 42 pages, 16 figures, revtex; version to be published in Phys Rev
- …