5,950 research outputs found

    Dynamical phenomena in Fibonacci Semiconductor Superlattices

    Get PDF
    We present a detailed study of the dynamics of electronic wavepackets in Fibonacci semiconductor superlattices, both in flat band conditions and subject to homogeneous electric fields perpendicular to the layers. Coherent propagation of electrons is described by means of a scalar Hamiltonian using the effective-mass approximation. We have found that an initial Gaussian wavepacket is filtered selectively when passing through the superlattice. This means that only those components of the wavepacket whose wavenumber belong to allowed subminibands of the fractal-like energy spectrum can propagate over the entire superlattice. The Fourier pattern of the transmitted part of the wavepacket presents clear evidences of fractality reproducing those of the underlying energy spectrum. This phenomenon persists even in the presence of unintentional disorder due to growth imperfections. Finally, we have demonstrated that periodic coherent-field induced oscillations (Bloch oscillations), which we are able to observe in our simulations of periodic superlattices, are replaced in Fibonacci superlattices by more complex oscillations displaying quasiperiodic signatures, thus sheding more light onto the very peculiar nature of the electronic states in these systems.Comment: 7 pagex, RevTex, 5 Postscript figures. Physical Review B (in press

    Trapped Rydberg Ions: From Spin Chains to Fast Quantum Gates

    Full text link
    We study the dynamics of Rydberg ions trapped in a linear Paul trap, and discuss the properties of ionic Rydberg states in the presence of the static and time-dependent electric fields constituting the trap. The interactions in a system of many ions are investigated and coupled equations of the internal electronic states and the external oscillator modes of a linear ion chain are derived. We show that strong dipole-dipole interactions among the ions can be achieved by microwave dressing fields. Using low-angular momentum states with large quantum defect the internal dynamics can be mapped onto an effective spin model of a pair of dressed Rydberg states that describes the dynamics of Rydberg excitations in the ion crystal. We demonstrate that excitation transfer through the ion chain can be achieved on a nanosecond timescale and discuss the implementation of a fast two-qubit gate in the ion chain.Comment: 26 pages, 9 figure

    A general T-matrix approach applied to two-body and three-body problems in cold atomic gases

    Full text link
    We propose a systematic T-matrix approach to solve few-body problems with s-wave contact interactions in ultracold atomic gases. The problem is generally reduced to a matrix equation expanded by a set of orthogonal molecular states, describing external center-of-mass motions of pairs of interacting particles; while each matrix element is guaranteed to be finite by a proper renormalization for internal relative motions. This approach is able to incorporate various scattering problems and the calculations of related physical quantities in a single framework, and also provides a physically transparent way to understand the mechanism of resonance scattering. For applications, we study two-body effective scattering in 2D-3D mixed dimensions, where the resonance position and width are determined with high precision from only a few number of matrix elements. We also study three fermions in a (rotating) harmonic trap, where exotic scattering properties in terms of mass ratios and angular momenta are uniquely identified in the framework of T-matrix.Comment: 14 pages, 4 figure

    Hydrodynamic behavior in expanding thermal clouds of Rb-87

    Full text link
    We study hydrodynamic behavior in expanding thermal clouds of Rb-87 released from an elongated trap. At our highest densities the mean free path is smaller than the radial size of the cloud. After release the clouds expand anisotropically. The cloud temperature drops by as much as 30%. This is attributed to isentropic cooling during the early stages of the expansion. We present an analytical model to describe the expansion and to estimate the cooling. Important consequences for time-of-flight thermometry are discussed.Comment: 7 pages with 2 figure

    Meson Form Factors and Non-Perturbative Gluon Propagators

    Get PDF
    The meson (pion and kaon) form factor is calculated in the perturbative framework with alternative forms for the running coupling constant and the gluon propagator in the infrared kinematic region. These modified forms are employed to test the sensibility of the meson form factor to the nonperturbative contributions. Its is a powerful discriminating quantity and the results obtained with a particular choice of modified running coupling constant and gluon propagator have a good agreement with the available data, for both mesons, indicating the robustness of the method of calculation. Nevertheless, nonperturbative aspects may be included in the perturbative framework of calculation of exclusive processes.Comment: 18 pages, 7 figures. Discutions added, clarifing figures. Accepted to be published in Phys. Rev.

    Formulae for zero-temperature conductance through a region with interaction

    Full text link
    The zero-temperature linear response conductance through an interacting mesoscopic region attached to noninteracting leads is investigated. We present a set of formulae expressing the conductance in terms of the ground-state energy or persistent currents in an auxiliary system, namely a ring threaded by a magnetic flux and containing the correlated electron region. We first derive the conductance formulae for the noninteracting case and then give arguments why the formalism is also correct in the interacting case if the ground state of a system exhibits Fermi liquid properties. We prove that in such systems, the ground-state energy is a universal function of the magnetic flux, where the conductance is the only parameter. The method is tested by comparing its predictions with exact results and results of other methods for problems such as the transport through single and double quantum dots containing interacting electrons. The comparisons show an excellent quantitative agreement.Comment: 18 pages, 18 figures; to appear in Phys. Rev.

    Graviton Resonances in E+ E- -> MU+ MU- at Linear Colliders with Beamstrahlung and ISR Effects

    Full text link
    Electromagnetic radiation emitted by the colliding beams is expected to play an important role at the next generation of high energy e^+ e^- linear collider(s). Focusing on the simplest process e+e- -> mu+ mu-, we show that radiative effects like initial state radiation (ISR) and beamstrahlung can lead to greatly-enhanced signals for resonant graviton modes of the Randall-Sundrum model.Comment: 20 pages Latex, 7 eps figure

    Analytic properties of the Landau gauge gluon and quark propagators

    Full text link
    We explore the analytic structure of the gluon and quark propagators of Landau gauge QCD from numerical solutions of the coupled system of renormalized Dyson--Schwinger equations and from fits to lattice data. We find sizable negative norm contributions in the transverse gluon propagator indicating the absence of the transverse gluon from the physical spectrum. A simple analytic structure for the gluon propagator is proposed. For the quark propagator we find evidence for a mass-like singularity on the real timelike momentum axis, with a mass of 350 to 500 MeV. Within the employed Green's functions approach we identify a crucial term in the quark-gluon vertex that leads to a positive definite Schwinger function for the quark propagator.Comment: 42 pages, 16 figures, revtex; version to be published in Phys Rev
    corecore