154 research outputs found

    Expanding and Contracting Coronal Loops as Evidence of Vortex Flows Induced by Solar Eruptions

    Full text link
    Eruptive solar flares were predicted to generate large-scale vortex flows at both sides of the erupting magnetic flux rope. This process is analogous to a well-known hydrodynamic process creating vortex rings. The vortices lead to advection of closed coronal loops located at peripheries of the flaring active region. Outward flows are expected in the upper part and returning flows in the lower part of the vortex. Here, we examine two eruptive solar flares, an X1.1-class flare SOL2012-03-05T03:20 and a C3.5-class SOL2013-06-19T07:29. In both flares, we find that the coronal loops observed by the Atmospheric Imaging Assembly in its 171\,\AA, 193\,\AA, or 211\,\AA~passbands show coexistence of expanding and contracting motions, in accordance with the model prediction. In the X-class flare, multiple expanding/contracting loops coexist for more than 35 minutes, while in the C-class flare, an expanding loop in 193\,\AA~appears to be close-by and co-temporal with an apparently imploding loop arcade seen in 171\,\AA. Later, the 193\,\AA~loop also switches to contraction. These observations are naturally explained by vortex flows present in a model of eruptive solar flares.Comment: The Astrophysical Journal, accepte

    Interchange Slip-Running Reconnection and Sweeping SEP Beams

    Get PDF
    We present a new model to explain how particles (solar energetic particles; SEPs), accelerated at a reconnection site that is not magnetically connected to the Earth, could eventually propagate along the well-connected open flux tube. Our model is based on the results of a low-beta resistive magnetohydrodynamics simulation of a three-dimensional line-tied and initially current-free bipole, that is embedded in a non-uniform open potential field. The topology of this configuration is that of an asymmetric coronal null-point, with a closed fan surface and an open outer spine. When driven by slow photospheric shearing motions, field lines, initially fully anchored below the fan dome, reconnect at the null point, and jump to the open magnetic domain. This is the standard interchange mode as sketched and calculated in 2D. The key result in 3D is that, reconnected open field lines located in the vicinity of the outer spine, keep reconnecting continuously, across an open quasi-separatrix layer, as previously identified for non-open-null-point reconnection. The apparent slipping motion of these field lines leads to form an extended narrow magnetic flux tube at high altitude. Because of the slip-running reconnection, we conjecture that if energetic particles would be traveling through, or be accelerated inside, the diffusion region, they would be successively injected along continuously reconnecting field lines that are connected farther and farther from the spine. At the scale of the full Sun, owing to the super-radial expansion of field lines below 3 solar radii, such energetic particles could easily be injected in field lines slipping over significant distances, and could eventually reach the distant flux tube that is well-connected to the Earth

    Twisting solar coronal jet launched at the boundary of an active region

    Full text link
    A broad jet was observed in a weak magnetic field area at the edge of active region NOAA 11106. The peculiar shape and magnetic environment of the broad jet raised the question of whether it was created by the same physical processes of previously studied jets with reconnection occurring high in the corona. We carried out a multi-wavelength analysis using the EUV images from the Atmospheric Imaging Assembly (AIA) and magnetic fields from the Helioseismic and Magnetic Imager (HMI) both on-board the SDO satellite. The jet consisted of many different threads that expanded in around 10 minutes to about 100 Mm in length, with the bright features in later threads moving faster than in the early ones, reaching a maximum speed of about 200 km s^{-1}. Time-slice analysis revealed a striped pattern of dark and bright strands propagating along the jet, along with apparent damped oscillations across the jet. This is suggestive of a (un)twisting motion in the jet, possibly an Alfven wave. A topological analysis of an extrapolated field was performed. Bald patches in field lines, low-altitude flux ropes, diverging flow patterns, and a null point were identified at the basis of the jet. Unlike classical lambda or Eiffel-tower shaped jets that appear to be caused by reconnection in current sheets containing null points, reconnection in regions containing bald patches seems to be crucial in triggering the present jet. There is no observational evidence that the flux ropes detected in the topological analysis were actually being ejected themselves, as occurs in the violent phase of blowout jets; instead, the jet itself may have gained the twist of the flux rope(s) through reconnection. This event may represent a class of jets different from the classical quiescent or blowout jets, but to reach that conclusion, more observational and theoretical work is necessary.Comment: 12 pages, 9 figures, accepted for publication in A&

    Formation of Solar Filaments by Steady and Nonsteady Chromospheric Heating

    Get PDF
    It has been established that cold plasma condensations can form in a magnetic loop subject to localized heating of the footpoints. In this paper, we use grid-adaptive numerical simulations of the radiative hydrodynamic equations to parametrically investigate the filament formation process in a pre-shaped loop with both steady and finite-time chromospheric heating. Compared to previous works, we consider low-lying loops with shallow dips, and use a more realistic description for the radiative losses. We demonstrate for the first time that the onset of thermal instability satisfies the linear instability criterion. The onset time of the condensation is roughly \sim 2 hr or more after the localized heating at the footpoint is effective, and the growth rate of the thread length varies from 800 km hr-1 to 4000 km hr-1, depending on the amplitude and the decay length scale characterizing this localized chromospheric heating. We show how single or multiple condensation segments may form in the coronal portion. In the asymmetric heating case, when two segments form, they approach and coalesce, and the coalesced condensation later drains down into the chromosphere. With a steady heating, this process repeats with a periodicity of several hours. While our parametric survey confirms and augments earlier findings, we also point out that steady heating is not necessary to sustain the condensation. Once the condensation is formed, it can keep growing also when the localized heating ceases. Finally, we show that the condensation can survive continuous buffeting by perturbations resulting from the photospheric p-mode waves.Comment: 43 pages, 18 figure

    3D evolution of a filament disappearance event observed by STEREO

    Full text link
    A filament disappearance event was observed on 22 May 2008 during our recent campaign JOP 178. The filament, situated in the southern hemisphere, showed sinistral chirality consistent with the hemispheric rule. The event was well observed by several observatories in particular by THEMIS. One day before the disappearance, Hα\alpha observations showed up and down flows in adjacent locations along the filament, which suggest plasma motions along twisted flux rope. THEMIS and GONG observations show shearing photospheric motions leading to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation angle 52.4 degrees, showed quite different views of this untwisting flux rope in He II 304 \AA\ images. Here, we reconstruct the 3D geometry of the filament during its eruption phase using STEREO EUV He II 304 \AA\ images and find that the filament was highly inclined to the solar normal. The He II 304 \AA\ movies show individual threads, which oscillate and rise to an altitude of about 120 Mm with apparent velocities of about 100 km s−1^{-1}, during the rapid evolution phase. Finally, as the flux rope expands into the corona, the filament disappears by becoming optically thin to undetectable levels. No CME was detected by STEREO, only a faint CME was recorded by LASCO at the beginning of the disappearance phase at 02:00 UT, which could be due to partial filament eruption. Further, STEREO Fe XII 195 \AA\ images showed bright loops beneath the filament prior to the disappearance phase, suggesting magnetic reconnection below the flux rope

    The 3D structure of an active region filament as extrapolated from photospheric and chromospheric observations

    Full text link
    The 3D structure of an active region (AR) filament is studied using nonlinear force-free field (NLFFF) extrapolations based on simultaneous observations at a photospheric and a chromospheric height. To that end, we used the Si I 10827 \AA\ line and the He I 10830 \AA\ triplet obtained with the Tenerife Infrared Polarimeter (TIP) at the VTT (Tenerife). The two extrapolations have been carried out independently from each other and their respective spatial domains overlap in a considerable height range. This opens up new possibilities for diagnostics in addition to the usual ones obtained through a single extrapolation from, typically, a photospheric layer. Among those possibilities, this method allows the determination of an average formation height of the He I 10830 \AA\ signal of \approx 2 Mm above the surface of the sun. It allows, as well, to cross-check the obtained 3D magnetic structures in view of verifying a possible deviation from the force- free condition especially at the photosphere. The extrapolations yield a filament formed by a twisted flux rope whose axis is located at about 1.4 Mm above the solar surface. The twisted field lines make slightly more than one turn along the filament within our box, which results in 0.055 turns/Mm. The convex part of the field lines (as seen from the solar surface) constitute dips where the plasma can naturally be supported. The obtained 3D magnetic structure of the filament depends on the choice of the observed horizontal magnetic field as determined from the 180\circ solution of the azimuth. We derive a method to check for the correctness of the selected 180\circ ambiguity solution.Comment: 31 pages, 13 figures, ApJ Accepte

    Sunspot rotation, filament, and flare: The event on 2000 February 10

    Full text link
    We find that a sunspot with positive polarity had an obvious counter-clockwise rotation and resulted in the formation and eruption of an inverse S-shaped filament in NOAA active region (AR) 08858 from 2000 February 9 to 10. The sunspot had two umbrae which rotated around each other by 195 degrees within about twenty-four hours. The average rotation rate was nearly 8 degrees per hour. The fastest rotation in the photosphere took place during 14:00UT to 22:01UT on February 9, with the rotation rate of nearly 16 degrees per hour. The fastest rotation in the chromosphere and the corona took place during 15:28UT to 19:00UT on February 9, with the rotation rate of nearly 20 degrees per hour. Interestingly, the rapid increase of the positive magnetic flux just occurred during the fastest rotation of the rotating sunspot, the bright loop-shaped structure and the filament. During the sunspot rotation, the inverse S-shaped filament gradually formed in the EUV filament channel. The filament experienced two eruptions. In the first eruption, the filament rose quickly and then the filament loops carrying the cool and the hot material were seen to spiral into the sunspot counterclockwise. About ten minutes later, the filament became active and finally erupted. The filament eruption was accompanied with a C-class flare and a halo coronal mass ejection (CME). These results provide evidence that sunspot rotation plays an important role in the formation and eruption of the sigmoidal active-region filament.Comment: 20 pages, 9 figures, Accepted for publication in Ap

    Multiwavelength Observations of Small-Scale Reconnection Events triggered by Magnetic Flux Emergence in the Solar Atmosphere

    Full text link
    The interaction between emerging magnetic flux and the pre-existing ambient field has become a "hot" topic for both numerical simulations and high-resolution observations of the solar atmosphere. The appearance of brightenings and surges during episodes of flux emergence is believed to be a signature of magnetic reconnection processes. We present an analysis of a small-scale flux emergence event in NOAA 10971, observed simultaneously with the Swedish 1-m Solar Telescope on La Palma and the \emph{Hinode} satellite during a joint campaign in September 2007. Extremely high-resolution G-band, Hα\alpha, and \ion{Ca}{2} H filtergrams, \ion{Fe}{1} and \ion{Na}{1} magnetograms, EUV raster scans, and X-ray images show that the emerging region was associated with chromospheric, transition region and coronal brightenings, as well as with chromospheric surges. We suggest that these features were caused by magnetic reconnection at low altitude in the atmosphere. To support this idea, we perform potential and linear force-free field extrapolations using the FROMAGE service. The extrapolations show that the emergence site is cospatial with a 3D null point, from which a spine originates. This magnetic configuration and the overall orientation of the field lines above the emerging flux region are compatible with the structures observed in the different atmospheric layers, and remain stable against variations of the force-free field parameter. Our analysis supports the predictions of recent 3D numerical simulations that energetic phenomena may result from the interaction between emerging flux and the pre-existing chromospheric and coronal field.Comment: In press for Ap

    Observation of An Evolving Magnetic Flux Rope Prior To and During A Solar Eruption

    Full text link
    Explosive energy release is a common phenomenon occurring in magnetized plasma systems ranging from laboratories, Earth's magnetosphere, the solar corona and astrophysical environments. Its physical explanation is usually attributed to magnetic reconnection in a thin current sheet. Here we report the important role of magnetic flux rope structure, a volumetric current channel, in producing explosive events. The flux rope is observed as a hot channel prior to and during a solar eruption from the Atmospheric Imaging Assembly (AIA) telescope on board the Solar Dynamic Observatory (SDO). It initially appears as a twisted and writhed sigmoidal structure with a temperature as high as 10 MK and then transforms toward a semi-circular shape during a slow rise phase, which is followed by fast acceleration and onset of a flare. The observations suggest that the instability of the magnetic flux rope trigger the eruption, thus making a major addition to the traditional magnetic-reconnection paradigm.Comment: 13 pages, 3 figure

    Physics of Solar Prominences: II - Magnetic Structure and Dynamics

    Full text link
    Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
    • …
    corecore