16 research outputs found
Shedding-generated Met receptor fragments can be routed to either the proteasomal or the lysosomal degradation pathway.
c-Met expression and activity in urogenital cancers – novel aspects of signal transduction and medical implications
Tree size
05 - Tree size on each site.
File names in the 05_DBH folder: dbhABI.csv, dbhBIC.csv, dbhD1823.csv, dbhD1847.csv, dbhSUT.csv.
These files contain the diameter at breast height (mm) of all living trees.
Trees ID are coded with their species code followed by a number
A genome-wide association study identifies candidate loci associated to syringomyelia secondary to Chiari-like malformation in Cavalier King Charles Spaniels
Background: Syringomyelia (SM) is a common condition affecting brachycephalic toy breed dogs and is characterized by the development of fluid-filled cavities within the spinal cord. It is often concurrent with a complex developmental malformation of the skull and craniocervical vertebrae called Chiari-like malformation (CM) characterized by a conformational change and overcrowding of the brain and cervical spinal cord particularly at the craniocervical junction. CM and SM have a polygenic mode of inheritance with variable penetrance. Results: We identified six cranial T1-weighted sagittal MRI measurements that were associated to maximum transverse diameter of the syrinx cavity. Increased syrinx transverse diameter has been correlated previously with increased likelihood of behavioral signs of pain. We next conducted a whole genome association study of these traits in 65 Cavalier King Charles Spaniel (CKCS) dogs (33 controls, 32 with extreme phenotypes). Two loci on CFA22 and CFA26 were found to be significantly associated to two traits associated with a reduced volume and altered orientation of the caudal cranial fossa. Their reconstructed haplotypes defined two associated regions that harbor only two genes: PCDH17 on CFA22 and ZWINT on CFA26. PCDH17 codes for a cell adhesion molecule expressed specifically in the brain and spinal cord. ZWINT plays a role in chromosome segregation and its expression is increased with the onset of neuropathic pain. Targeted genomic sequencing of these regions identified respectively 37 and 339 SNPs with significantly associated P values. Genotyping of tagSNPs selected from these 2 candidate loci in an extended cohort of 461 CKCS (187 unaffected, 274 SM affected) identified 2 SNPs on CFA22 that were significantly associated to SM strengthening the candidacy of this locus in SM development. Conclusions: We identified 2 loci on CFA22 and CFA26 that contained only 2 genes, PCDH17 and ZWINT, significantly associated to two traits associated with syrinx transverse diameter. The locus on CFA22 was significantly associated to SM secondary to CM in the CKCS dog breed strengthening its candidacy for this disease. This study will provide an entry point for identification of the genetic factors predisposing to this condition and its underlying pathogenic mechanisms
Amplification of apoptosis through sequential caspase cleavage of the MET tyrosine kinase receptor
Activation of the MET tyrosine kinase receptor by hepatocyte growth factor/scatter factor is classically associated with cell survival. Nonetheless, stress stimuli can lead to a caspase-dependent cleavage of MET within its juxtamembrane region, which generate a proapoptotic 40 kDa fragment (p40 MET). We report here that p40 MET is in fact generated through an additional caspase cleavage of MET within its extreme C-terminal region, which removes only few amino acids. We evidenced a hierarchical organization of these cleavages, with the C-terminal cleavage favoring the juxtamembrane one. As a functional consequence, the removal of the last amino acids of p40 MET increases its apoptotic capacity. Finally, cells expressing a MET receptor mutated at the C-terminal caspase site are unable to generate p40 MET and are resistant to apoptosis, indicating that generation of p40 MET amplifies apoptosis. These results revealed a two-step caspase cleavage of MET resulting in the reshaping of this survival receptor to a proapoptotic factor
