223 research outputs found

    Smart sensing and multisensorial data fusion for road obstacle detection and tracking

    Get PDF
    In this article, we present a multisensorial solution for road obstacle detection and tracking . This solution is based on a mixe d camera/3D sensor mounted on the front of an experimental vehicle . The multisensor is described . The calibration step enables the matching of the heterogeneous data . Two capabalities of the senso r have been developped : the controlled perception making possible the acquisition of depth data in an area defined in the intensit y image; the visual servoing carrying out the focusing of the laser beam on a moving target detected in the intensity image . These two capabalities allow a Feedback control on the acquisition mode of the sensor according to the environment . ' The perception strategy is based on the selection of the best sensor for a given goal . The obstacle detection is based on th e segmentation and interpretation of depth data which are well suited in this context . However, the rate of acquisition of these dat a is too slow in order to extract the kinematic state of the obstacle . So, the tracking process is based on the collaboration betwee n intensity image processing which ensures the tracking itself and a 3D process which returns the obstacle model size to search in th e image. This algorithm of heterogeneous data fusion, associated with a Kalman filtering, permits to compute the state of obstacles . This work fits into the european project PROMETHEUS . Experimental results have been validated in real situation on the Prola b vehicle .Dans cet article, nous présentons une solution multisensorielle temps réel pour la détection et le suivi d'obstacles sur route. Cette solution est basée sur l'utilisation d'un capteur mixte caméra vidéo/capteur de profondeur placé à l'avant d'un véhicule expérimental. Le capteur multisensoriel est décrit. Le calibrage permet l'alignement des données hétérogènes. Deux facultés du capteur sont développées : la perception dirigée permet l'acquisition d'une image de profondeur dans une zone définie dans l'image de luminance ; l'asservissement visuel réalise la focalisation du faisceau laser sur un point de l'image de luminance. De façon générale, ces facultés permettent un contrôle par rétroaction sur le mode d'acquisition du capteur en fonction de la situation dans laquelle se trouve le système de perception. La stratégie de perception est basée sur la sélection du capteur adéquat pour un objectif donné. La détection d'obstacle repose sur la segmentation et l'interprétation des données de profondeur qui sont d'une grande pertinence dans ce contexte. En revanche, la cadence d'acquisition de ces données n'est pas suffisante si l'on souhaite dériver les caractéristiques cinématiques des obstacles. En conséquence, le suivi des obstacles combine un traitement de l'image de luminance rapide avec un traitement de l'information 3D. Le premier permet de réactualiser la position de l'obstacle afin d'asservir le faisceau laser sur celui-ci et le second assure la connaissance de la taille du modèle de l'obstacle à chercher dans l'image. Cet algorithme de fusion de données hétérogènes accompagné d'un filtrage de Kalman permet d'inférer les caractéristiques cinématiques des obstacles dont la connaissance est indispensable pour aborder ceux-ci dans de bonnes conditions. Ces recherches sont menées dans le cadre du projet européen PROMETHEUS et sont validées en situation réelle à bord du véhicule expérimental Prolab

    Killing them softly:managing pathogen polymorphism and virulence in spatially variable environments

    Get PDF
    Understanding why pathogen populations are genetically variable is vital because genetic variation fuels evolution, which often hampers disease control efforts. Here I argue that classical models of evolution in spatially variable environments – specifically, models of hard and soft selection – provide a useful framework to understand the maintenance of pathogen polymorphism and the evolution of virulence. First, the similarities between models of hard and soft selection and pathogen life cycles are described, highlighting how the type and timing of pathogen control measures impose density regulation that may affect both the level of pathogen polymorphism and virulence. The article concludes with an outline of potential lines of future theoretical and experimental work

    What traits are carried on mobile genetic elements, and why?

    Get PDF
    Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes

    Within-Host Dynamics of Multi-Species Infections: Facilitation, Competition and Virulence

    Get PDF
    Host individuals are often infected with more than one parasite species (parasites defined broadly, to include viruses and bacteria). Yet, research in infection biology is dominated by studies on single-parasite infections. A focus on single-parasite infections is justified if the interactions among parasites are additive, however increasing evidence points to non-additive interactions being the norm. Here we review this evidence and theoretically explore the implications of non-additive interactions between co-infecting parasites. We use classic Lotka-Volterra two-species competition equations to investigate the within-host dynamical consequences of various mixes of competition and facilitation between a pair of co-infecting species. We then consider the implications of these dynamics for the virulence (damage to host) of co-infections and consequent evolution of parasite strategies of exploitation. We find that whereas one-way facilitation poses some increased virulence risk, reciprocal facilitation presents a qualitatively distinct destabilization of within-host dynamics and the greatest risk of severe disease

    Location of Pathogenic Bacteria during Persistent Infections: Insights from an Analysis Using Game Theory

    Get PDF
    Bacterial persistent infections are responsible for a significant amount of the human morbidity and mortality. Unlike acute bacterial infections, it is very difficult to treat persistent bacterial infections (e.g. tuberculosis). Knowledge about the location of pathogenic bacteria during persistent infection will help to treat such conditions by designing novel drugs which can reach such locations. In this study, events of bacterial persistent infections were analyzed using game theory. A game was defined where the pathogen and the host are the two players with a conflict of interest. Criteria for the establishment of Nash equilibrium were calculated for this game. This theoretical model, which is very simple and heuristic, predicts that during persistent infections pathogenic bacteria stay in both intracellular and extracellular compartments of the host. The result of this study implies that a bacterium should be able to survive in both intracellular and extracellular compartments of the host in order to cause persistent infections. This explains why persistent infections are more often caused by intracellular pathogens like Mycobacterium and Salmonella. Moreover, this prediction is in consistence with the results of previous experimental studies

    The evolution of sex-specific virulence in infectious diseases

    Get PDF
    Fatality rates of infectious diseases are often higher in men than women. Although this difference is often attributed to a stronger immune response in women, we show that differences in the transmission routes that the sexes provide can result in evolution favouring pathogens with sex-specific virulence. Because women can transmit pathogens during pregnancy, birth or breast-feeding, pathogens adapt, evolving lower virulence in women. This can resolve the long-standing puzzle on progression from Human T-cell Lymphotropic Virus Type 1 (HTLV-1) infection to lethal Adult T-cell Leukaemia (ATL); a progression that is more likely in Japanese men than women, while it is equally likely in Caribbean women and men. We argue that breastfeeding, being more prolonged in Japan than in the Caribbean, may have driven the difference in virulence between the two populations. Our finding signifies the importance of investigating the differences in genetic expression profile of pathogens in males and females

    Differences in Accumulation and Virulence Determine the Outcome of Competition during Tobacco etch virus Coinfection

    Get PDF
    Understanding the evolution of virulence for RNA viruses is essential for developing appropriate control strategies. Although it has been usually assumed that virulence is a consequence of within-host replication of the parasite, viral strains may be highly virulent without experiencing large accumulation as a consequence of immunopathological host responses. Using two strains of Tobacco etch potyvirus (TEV) that show a negative relationship between virulence and accumulation rate, we first explored the evolution of virulence and fitness traits during simple and mixed infections. Short-term evolution experiments initiated with each strain independently confirmed the genetic and evolutionary stability of virulence and viral load, although infectivity significantly increased for both strains. Second, competition experiments between hypo- and hypervirulent TEV strains have shown that the outcome of competition is driven by differences in replication rate. A simple mathematical model has been developed to analyze the dynamics of these two strains during coinfection. The model qualitatively reproduced the experimental results using biologically meaningful parameters. Further analyses of the model also revealed a wide parametric region in which a low-fitness but hypovirulent virus can still outcompete a high-fitness but hypervirulent one. These results provide additional support to the observation that virulence and within-host replication may not necessarily be strongly tied in plant RNA viruses

    Assessing Predicted HIV-1 Replicative Capacity in a Clinical Setting

    Get PDF
    HIV-1 replicative capacity (RC) provides a measure of within-host fitness and is determined in the context of phenotypic drug resistance testing. However it is unclear how these in-vitro measurements relate to in-vivo processes. Here we assess RCs in a clinical setting by combining a previously published machine-learning tool, which predicts RC values from partial pol sequences with genotypic and clinical data from the Swiss HIV Cohort Study. The machine-learning tool is based on a training set consisting of 65000 RC measurements paired with their corresponding partial pol sequences. We find that predicted RC values (pRCs) correlate significantly with the virus load measured in 2073 infected but drug naïve individuals. Furthermore, we find that, for 53 pairs of sequences, each pair sampled in the same infected individual, the pRC was significantly higher for the sequence sampled later in the infection and that the increase in pRC was also significantly correlated with the increase in plasma viral load and with the length of the time-interval between the sampling points. These findings indicate that selection within a patient favors the evolution of higher replicative capacities and that these in-vitro fitness measures are indicative of in-vivo HIV virus load

    Virulence and Pathogen Multiplication: A Serial Passage Experiment in the Hypervirulent Bacterial Insect-Pathogen Xenorhabdus nematophila

    Get PDF
    The trade-off hypothesis proposes that the evolution of pathogens' virulence is shaped by a link between virulence and contagiousness. This link is often assumed to come from the fact that pathogens are contagious only if they can reach high parasitic load in the infected host. In this paper we present an experimental test of the hypothesis that selection on fast replication can affect virulence. In a serial passage experiment, we selected 80 lines of the bacterial insect-pathogen Xenorhabdus nematophila to multiply fast in an artificial culture medium. This selection resulted in shortened lag phase in our selected bacteria. We then injected these bacteria into insects and observed an increase in virulence. This could be taken as a sign that virulence in Xenorhabdus is linked to fast multiplication. But we found, among the selected lineages, either no link or a positive correlation between lag duration and virulence: the most virulent bacteria were the last to start multiplying. We then surveyed phenotypes that are under the control of the flhDC super regulon, which has been shown to be involved in Xenorhabdus virulence. We found that, in one treatment, the flhDC regulon has evolved rapidly, but that the changes we observed were not connected to virulence. All together, these results indicate that virulence is, in Xenorhabdus as in many other pathogens, a multifactorial trait. Being able to grow fast is one way to be virulent. But other ways exist which renders the evolution of virulence hard to predict

    Association Between Severity of Obstructive Sleep Apnea and Blood Markers of Liver Injury

    Get PDF
    Obstructive sleep apnea (OSA) may contribute to the development of nonalcoholic fatty liver disease. We performed a multisite cross-sectional study to evaluate the association between the severity of OSA and blood markers of liver steatosis (using the hepatic steatosis index), cytolysis (based on alanine aminotransferase activity), and significant liver fibrosis (based on the FibroMeter [Echosens] nonalcoholic fatty liver disease score) in 1285 patients with suspected OSA in France. After adjusting for confounders including central obesity, the risk of liver steatosis increased with the severity of OSA (P for trend < .0001) and sleep-related hypoxemia (P for trend < .0003 for mean oxygen saturation). Decreasing mean oxygen saturation during sleep also was associated independently with a higher risk of liver cytolysis (P for trend < .0048). Severe OSA conferred an approximate 2.5-fold increase in risk for significant liver fibrosis compared with patients without OSA, but the association between OSA severity and liver fibrosis was not maintained after adjusting for confounders
    corecore