901 research outputs found
Microfluidic interactions between red blood cells and drug carriers by image analysis techniques
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Blood is a complex biological fluid composed of deformable cells and platelets suspended in
plasma, a protein-rich liquid. The peculiar nature of blood needs to be considered when designing a drug
delivery strategy based on systemically administered carriers. Here, we report on an in vitro fluid dynamic
investigation of the influence of the microcapillary flow of red blood cells (RBCs) on micron sized carriers
by high speed imaging methods. The experiments were carried out in a 50μm diameter glass capillary that
mimicked the hydrodynamic conditions of human microcirculation. Spherical μ particles (μ-Ps), with sizes
ranging between 0.5 and 3μm, were tested. Images of the flowing RBCs and μ-Ps were acquired by a highspeed/ high-magnification microscopy. The transport and distribution of rigid particles in a suspension of
RBCs under shear flow were followed for: i) the migration of RBCs towards the vessel centerline due to
their deformability; ii) the cross-flow migration of μ-Ps towards the vessel wall due to their hydrodynamic
interactions with RBCs; iii) the radial distribution of μ-Ps in the presence of RBCs. This study suggests that
the therapeutic efficacy of μ-Ps could be ultimately affected by their interactions with the flowing RBCs in
the vasculature
The ATLAS RPC ROD for Super LHC
The number of interactions per bunch crossing for the upgrade of the Large Hadron Collider is expected to be ten times greater than the actual one. As a consequence, the ATLAS detector for SLHC foresees the use of a larger number of readout channels and also a new trigger level is under development. In order to face with such issue, we developed a new architecture for the Read Out Driver (ROD) for the ATLAS RPC Muon Spectrometer in the barrel region. Presently, each ROD board receives ATLAS RPC Muon readout data and arranges all the data fragments of a sector of the spectrometer in a unique event, sending it to the next acquisition systems. Our new design is based on the new generation Xilinx Virtex5 FPGA and it works with a clock frequency six times greater than the actual bunch crossing rate of the LHC. We also implemented the output channel of the ROD, presently based on S-Link protocol, by using the GTP transceivers inside the FPGA. We present an overview of our design, focusing on the newly added hardware features
Wind of change: Better air for microbial environmental control
Background: The COVID19 epidemic highlighted the importance of air in the transmission of pathogens. Air
disinfection is one of the key points to reduce the risk of transmission both in the health sector and in public, civil
and industrial environments. All bacteria and viruses tested to date can be inactivated by UV-C rays. Laboratory
tested UV-C systems are increasingly popular and proposed as effective technologies for air purification; few
studies have evaluated their performance in populated indoor environments. The aim of this investigation was to
evaluate the effectiveness of a UV-C disinfection system for air in a real working context.
Methods: This experimental study was conducted between December 2020 and February 2021 in an office of the
Department of Molecular and Developmental Medicine of the University of Siena, Italy. A pre-final version air
purifier (Cleaning Air T12), capable of treating 210 m3/h of air, was first tested for its ability to filter particulates
and reduce microbial air contamination in the absence of people. Subsequently, the experiments were conducted
in the presence of 3–5 subjects who worked for several hours in an office. During the tests, microbiological
samples of air were collected in real time, switching the system on and off periodically. Air samples were
collected and incubated on Petri dishes at 36 ◦C and 22 ◦C. Statistical analysis was performed with Stata 16
software assuming a significance level of 95%. An interpolating model was identified to describe the dynamics of
contamination reduction when the device operates.
Results: Preliminary tests showed a significant 62.5% reduction in Colony-Forming Units (CFUs) with 36 ◦C
incubation. Reductions in the particulate component were also observed. In the main test, comparison of CFU
data, between the device-on phase (90 min) and the subsequent device-off phase (60 min), showed statistically
significant increase (p = 0.001) of environmental contamination passing from a mean of 86.6 (65.8–107.4) to
171.1 (143.9–198.3) CFU/m3, that is a rise of about 100%. The interpolating model exhibited a good fit of CFU
reduction trend with the device on.
Conclusions: The system, which mainly uses UV-C lamps for disinfection, was able to significantly reduce envi-
ronmental and human contamination in real time. Experimental tests have shown that as soon as the device is
switched off, after at least half an hour of operation, the healthiness of the air decreases drastically within 10
minutes, bringing the airborne microbial contamination (induced by the presence of operators in the environ-
ment) to levels even higher than 150% of the last value with the device on. Re-engineering strategies for system
improvement were also discusse
Effect of NASA Light-emitting Diode Irradiation on Wound Healing
Objective: The purpose of this study was to assess the effects of hyperbaric oxygen (HBO) and near-infrared light therapy on wound healing.
Background Data: Light-emitting diodes (LED), originally developed for NASA plant growth experiments in space show promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. In this paper, we review and present our new data of LED treatment on cells grown in culture, on ischemic and diabetic wounds in rat models, and on acute and chronic wounds in humans.
Materials and Methods: In vitro and in vivo (animal and human) studies utilized a variety of LED wavelength, power intensity, and energy density parameters to begin to identify conditions for each biological tissue that are optimal for biostimulation.
Results: LED produced in vitro increases of cell growth of 140–200% in mouse-derived fibroblasts, rat-derived osteoblasts, and rat-derived skeletal muscle cells, and increases in growth of 155–171% of normal human epithelial cells. Wound size decreased up to 36% in conjunction with HBO in ischemic rat models. LED produced improvement of greater than 40% in musculoskeletal training injuries in Navy SEAL team members, and decreased wound healing time in crew members aboard a U.S. Naval submarine. LED produced a 47% reduction in pain of children suffering from oral mucositis.
Conclusion: We believe that the use of NASA LED for light therapy alone, and in conjunction with hyperbaric oxygen, will greatly enhance the natural wound healing process, and more quickly return the patient to a preinjury/ illness level of activity. This work is supported and managed through the NASA Marshall Space Flight Center–SBIR Program
Experimental Study of the Effects of Three Types of Meat on Endothelial Function in a Group of Healthy Volunteers
Background: There is a relationship between atherosclerotic risk factors and increased vascular production of reactive oxygen species (ROS). Oxidized LDL and ROS may directly cause endothelial dysfunction by reducing endothelial nitric oxide (NO) bioavailability. The semi-essential amino acid L-arginine is the only substrate for NO synthesis in vascular endothelial cells. Therefore, this amino acid improves endothelial function and plays a role in the prevention and/or treatment of multiple cardiovascular diseases: atherosclerosis, hypertension, diabetes and so on. To determine the effects of three different protein matrices (250 g Fillet of Beef, FB; Chicken Raised on the Ground, CRG; Free-Range Chicken, FRC) with a known content of arginine on the cardiovascular workload, vascular compliance and urinary excretion of some parameters of endothelial function as TGF–Beta, NO (nitrate e nitrite) in a group of healthy volunteers. Materials and methods: We enrolled 10 men to study the behavior of Systolic, Diastolic, Mean, and Pulse Blood Pressure, of Vascular Resistances, of Macro and Micro Vascular Elasticity, of urinary excretion of TGF-β and Nitric Oxide as ratio of creatinine before and after two hours of each meal. The cardiovascular parameters are determined by HDI/Pulse Wave CR 2000 (Hypertension Diagnostic Inc, Eagan, MN); TGF-β is analysed by Elisa method (R&D Systems) and NO by colorimetric method (Cayman). Results and Conclusion: The protein meal packed with CRG causes a significant decrease in diastolic blood pressure mean pressure and vascular resistance in urinary excretion of TGF. FB resulted in a significant decrease in vascular resistance and urinary excretion of NO, while significantly increasing the Pulse Pressure, heart rate and urinary excretion of TGF-β. FRC resulted in a significant reduction of macrovascular elasticity; increase the urinary excretion of TGF and Pulse Pressure. We can conclude that CRG meat looks better both in terms of metabolic and cardiovascular load especially at endothelial level
The Impact of Sex and Arterial Stiffness Interactions on the Outcome after an Acute Ischemic Stroke: A Retrospective Cohort Study
Background/Objectives: Arterial stiffness (AS) is an independent predictor of cardiovascular events and is associated with a poor prognosis. While AS may represent a novel therapeutic target, recent evidence shows that it is sexually dimorphic. The aim of this study was to evaluate relative sex differences in arterial stiffness and their possible impact on the outcome of acute ischemic stroke. Methods: We retrospectively evaluated a cohort of adult patients with the following inclusion criteria: acute ischemic stroke, which occurred within 24 h from the onset of symptoms, confirmed through neuroimaging examinations, additional evaluations including extracranial and transcranial arterial ultrasound examinations, transthoracic echocardiography, a 12-lead resting ECG, and continuous 24 h in-hospital blood pressure monitoring. Based on the 24 h blood pressure monitoring, the following parameters were evaluated: systolic blood pressure, diastolic blood pressure, mean blood pressure, pulse pressure, and arterial stiffness index (ASI). The modified Rankin scale (mRS) was assessed at 90 days to evaluate the 3-month clinical outcome, defining an unfavorable outcome as an mRS score ≥ 3. To assess the factors associated with unfavorable outcomes, a stepwise logistic regression model was performed on the total sample size, and the analyses were replicated after stratifying by sex. Results: A total of 334 patients (176 males, 158 females) were included in the analysis. There was a significant sex-dependent impact of ASI on the 90-day unfavorable Rankin score (mRS score ≥ 3) as only men had a reduced likelihood of favorable outcomes with increasing arterial stiffness (OR:1.54, 95% CI: 1.06–2.23; P-interaction = 0.023). Conclusions: The influence of ASI on the 3-month functional outcome after acute ischemic stroke is at least in part sex-related, suggesting that, in males, higher ASI values are associated with a worse outcome
Centenarians' offspring as a model of healthy aging: a reappraisal of the data on Italian subjects and a comprehensive overview
Within the scenario of an increasing life expectancy worldwide it is mandatory to identify determinants of healthy aging. Centenarian offspring (CO) is one of the most informative model to identify trajectories of healthy aging and their determinants (genetic and environmental), being representative of elderly in their 70th whose lifestyle can be still modified to attain a better health. This study is the first comprehensive investigation of the health status of 267 CO (mean age: 70.2 years) and adopts the innovative approach of comparing CO with 107 age-matched offspring of non-long-lived parents (hereafter indicated as NCO controls), recruited according to strict inclusion demographic criteria of Italian population. We adopted a multidimensional approach which integrates functional and cognitive assessment together with epidemiological and clinical data, including pro- and anti-inflammatory cytokines and adipokines, lipid profile, and insulin resistance. CO have a lower prevalence of stroke, cerebral thrombosis-hemorrhage, hypertension, hypercholesterolemia, and other minor diseases, lower BMI and waist circumference, a better functional and cognitive status and lower plasma level of FT4 compared to NCO controls. We conclude that a multidimensional approach is a reliable strategy to identify the health status of elderly at an age when interventions to modify their health trajectory are feasible
Study of Chinese Insurance Company’s Risk Estimation Index System
自从1990年以来,日本多家保险公司因资不抵债相继破产,不仅在国际社会造成了极大的震动,也给我国保险业敲响了警钟:保险公司在经营风险产品的同时,应加强对自身风险的评估。自从我国加入WTO后,保险业受到了巨大的冲击,加强对我国保险公司风险评估指标体系的研究便具有十分重要的意义。首先,对保险公司风险评估指标体系的研究,能为量化保险公司经营风险提供依据。其次,对保险公司风险评估指标体系的研究,有利于保险公司加强风险管理。 本文选择保险公司风险评估指标作为研究的重点,详细介绍了保险公司风险评估指标体系的内容、评价及在我国保险市场上的应用,并选取了四家保险公司近年来的数据,用IRIS指标体系做实证研究...Since 1990, some insurance companies of Japanese have been bankrupted. It made a big ring to the international financial market and Chinese insurance market: Insurance companies should pay more attention to its risk evaluation. After China’s entry into the WTO, some industries fell under big impact, especially the insurance industry. So the study of risk evaluation became more and more important t...学位:经济学硕士院系专业:经济学院财政金融系_金融学(含保险学)学号:20044202
- …