40 research outputs found

    Pneumolysin boosts the neuroinflammatory response to Streptococcus pneumoniae through enhanced endocytosis.

    Get PDF
    In pneumococcal meningitis, bacterial growth in the cerebrospinal fluid results in lysis, the release of toxic factors, and subsequent neuroinflammation. Exposure of primary murine glia to Streptococcus pneumoniae lysates leads to strong proinflammatory cytokine and chemokine production, blocked by inhibition of the intracellular innate receptor Nod1. Lysates enhance dynamin-dependent endocytosis, and dynamin inhibition reduces neuroinflammation, blocking ligand internalization. Here we identify the cholesterol-dependent cytolysin pneumolysin as a pro-endocytotic factor in lysates, its elimination reduces their proinflammatory effect. Only pore-competent pneumolysin enhances endocytosis in a dynamin-, phosphatidylinositol-3-kinase- and potassium-dependent manner. Endocytic enhancement is limited to toxin-exposed parts of the membrane, the effect is rapid and pneumolysin permanently alters membrane dynamics. In a murine model of pneumococcal meningitis, mice treated with chlorpromazine, a neuroleptic with a complementary endocytosis inhibitory effect show reduced neuroinflammation. Thus, the dynamin-dependent endocytosis emerges as a factor in pneumococcal neuroinflammation, and its enhancement by a cytolysin represents a proinflammatory control mechanism

    Extracellular calcium reduction strongly increases the lytic capacity of pneumolysin from streptococcus pneumoniae in brain tissue

    Get PDF
    Background. Streptococcus pneumoniae causes serious diseases such as pneumonia and meningitis. Its major pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, which produces lytic pores at high concentrations. At low concentrations, it has other effects, including induction of apoptosis. Many cellular effects of pneumolysin appear to be calcium dependent. Methods. Live imaging of primary mouse astroglia exposed to sublytic amounts of pneumolysin at various concentrations of extracellular calcium was used to measure changes in cellular permeability (as judged by lactate dehydrogenase release and propidium iodide chromatin staining). Individual pore properties were analyzed by conductance across artificial lipid bilayer. Tissue toxicity was studied in continuously oxygenated acute brain slices. Results. The reduction of extracellular calcium increased the lytic capacity of the toxin due to increased membrane binding. Reduction of calcium did not influence the conductance properties of individual toxin pores. In acute cortical brain slices, the reduction of extracellular calcium from 2 to 1 mM conferred lytic activity to pathophysiologically relevant nonlytic concentrations of pneumolysin. Conclusions. Reduction of extracellular calcium strongly enhanced the lytic capacity of pneumolysin due to increased membrane binding. Thus, extracellular calcium concentration should be considered as a factor of primary importance for the course of pneumococcal meningitis

    Magnesium therapy improves outcome in Streptococcus pneumoniae meningitis by altering pneumolysin pore formation

    Get PDF
    BACKGROUND AND PURPOSE Streptococcus pneumoniae is the most common cause of bacterial meningitis in adults and is characterised by high lethality and substantial cognitive disabilities in survivors. Here, we study the capacity of an established therapeutic agent, magnesium, to improve survival in pneumococcal meningitis by modulating the neurological effects of the major pneumococcal pathogenic factor pneumolysin. EXPERIMENTAL APPROACH We used mixed primary glial and acute brain slice cultures, pneumolysin injection in infant rats, a mouse meningitis model, and complementary approaches such as Western blot, a black lipid bilayer conductance assay and live imaging of primary glial cells. KEY RESULTS Treatment with therapeutic concentrations of magnesium chloride (500 mg/kg in animals and 2 mM in cultures) prevented pneumolysin-induced brain swelling and tissue remodelling both in brain slices and in animal models. In contrast to other divalent ions, which diminish the membrane binding of pneumolysin in non-therapeutic concentrations, magnesium delayed toxin-driven pore formation without affecting its membrane binding or the conductance profile of its pores. Finally, magnesium prolonged the survival and improved clinical condition of mice with pneumococcal meningitis in the absence of antibiotic treatment. CONCLUSIONS AND IMPLICATIONS Magnesium is a well-established and safe therapeutic agent that has demonstrated capacity for attenuating pneumolysin-triggered pathogenic effects on the brain. The improved animal survival and clinical condition in the meningitis model points to magnesium as a promising candidate for adjunctive treatment of pneumococcal meningitis together with antibiotic therapy

    Pneumolysin: Einfluss der Porenbildung auf zelluläre Transportprozesse und inflammatorische Antworten in Astrozyten

    Get PDF
    Pneumolysin, a protein toxin, represents one of the major virulence factors of Streptococcus pneumoniae. This pathogen causes bacterial meningitis with especially high disease rates in young children, elderly people and immunosuppressed patients. The protein toxin belongs to the family of cholesterol-dependent cytolysins, which require membrane cholesterol in order to bind and to be activated. Upon activation, monomers assemble in a circle and undergo conformational change. This conformational change leads to the formation of a pore, which eventually leads to cell lysis. This knowledge was obtained by studies that used a higher concentration compared to the concentration of pneumolysin found in the cerebrospinal fluid of meningitis patients. Thus, a much lower concentration of pneumolysin was used in this work in order to investigate effects of this toxin on primary mouse astrocytes. Previously, a small GTPase activation, possibly leading to cytoskeletal changes, was found in a human neuroblastoma cell line. This led to the hypothesis that pneumolysin can lead to similar cytoskeletal changes in primary cells. The aim of this work was to investigate and characterise the effects of pneumolysin on primary mouse astrocytes in terms of a possible pore formation, cellular trafficking and immunological responses. Firstly, the importance of pore-formation on cytoskeletal changes was to be investigated. In order to tackle this question, wild-type pneumolysin and two mutant variants were used. One variant was generated by exchanging one amino acid in the cholesterol recognising region, the second variant was generated by deleting two amino acids in a protein domain that is essential for oligomerisation. These variants should be incapable of forming a pore and were compared to the wild-type in terms of lytic capacities, membrane binding, membrane depolarisation, pore-formation in artificial membranes (planar lipid bilayer) and effects on the cytoskeleton. These investigations resulted in the finding that the pore-formation is required for inducing cell lysis, membrane depolarisation and cytoskeletal changes in astrocytes. The variants were not able to form a pore in planar lipid bilayer and did not cause cell lysis and membrane depolarisation. However, they bound to the cell membrane to the same extent as the wild-type toxin. Thus, the pore-formation, but not the membrane binding was the cause for these changes. Secondly, the effect of pneumolysin on cellular trafficking was investigated. Here, the variants showed no effect, but the wild-type led to an increase in overall endocytotic events and was itself internalised into the cell. In order to characterise a possible mechanism for internalisation, a GFP-tagged version of pneumolysin was used. Several fluorescence-labelled markers for different endocytotic pathways were used in a co-staining approach with pneumolysin. Furthermore, inhibitors for two key-players in classical endocytotic pathways, dynamin and myosin II, were used in order to investigate classical endocytotic pathways and their possible involvement in toxin internalisation. The second finding of this work is that pneumolysin is taken up into the cell via dynamin- and caveolin-independent pinocytosis, which could transfer the toxin to caveosomes. From there, the fate of the toxin remains unknown. Additionally, pneumolysin leads to an overall increase in endocytotic events. This observation led to the third aim of this work. If the toxin increases the overall rate of endocytosis, the question arises whether toxin internalisation favours bacterial tissue penetration of the host or whether it serves as a defence mechanism of the cell in order to degrade the protein. Thus, several proinflammatory cytokines were investigated, as previous studies describe an effect of pneumolysin on cytokine production. Surprisingly, only interleukin 6-production was increased after toxin-treatment and no effect of endocytotic inhibitors on the interleukin 6-production was observed. The conclusion from this finding is that pneumolysin leads to an increase of interleukin 6, which would not depend on the endocytotic uptake of pneumolysin. The production of interleukin 6 would enhance the production of acute phase proteins, T-cell activation, growth and differentiation. On the one hand, this activation could serve pathogen clearance from infected tissue. On the other hand, the production of interleukin 6 could promote a further penetration of pathogen into host tissue. This question should be further investigated.Das Protein-Toxin Pneumolysin ist einer der entscheidenden Virulenzfaktoren von Streptococcus pneumoniae. Dieses Protein-Toxin gehört zur Familie der cholesterinabhängigen Zytolysine, die Membrancholesterol für ihre Aktivierung und Bindung benötigen. Nach der Membranbindung ordnen sich die Toxinmonomere kreisförmig an und ändern ihre Konformation, wodurch eine Pore entsteht, die dann zu einer Lyse der Zelle führt. Vor kurzem wurde nach Pneumolysinbehandlung in einer humanen Neuroblastomzelllinie eine Aktivierung kleiner GTPasen gefunden, die für zytoskelettale Veränderungen entscheidend sind (z.B. Zellbewegungen). Deshalb wurde die Hypothese aufgestellt, dass Pneumolysin diese zytoskelettalen Veränderungen auch in primären neuronalen Zellen auslösen könnte. Das Ziel dieser Arbeit war, die Effekte von Pneumolysin auf primäre Mausastrozyten im Hinblick auf Porenbildung, zelluläre Transportprozesse und immunologische Antworten zu untersuchen. Im ersten Teil wird die Bedeutung der Porenbildung auf zytoskelettale Veränderungen untersucht. Hierbei wurden lytische Fähigkeiten, Membranbindung, Membrandepolarisation, Porenbildung im künstlichen Bilayer und Effekte auf das Zytoskelett untersucht. Sowohl der Wildtyp als auch die Varianten zeigten die gleiche Stärke an Membranbindung. Diese Untersuchungen weisen darauf hin, dass die Porenbildung für die Zell-Lyse, Membrandepolarisation und zytoskelettale Veränderungen in Mausastrozyten wichtig ist und führt zu der Schlussfolgerung, dass nicht die Membranbindung, sondern die Porenbildung entscheidend für die beobachteten zytoskelettalen Veränderungen ist. Im zweiten Teil dieser Arbeit wurde der Effekt des Pneumolysin auf zelluläre Transportprozesse untersucht. Erneut zeigten die Pneumolysinvarianten keine Wirkung, während der Wildtyp die Gesamtrate der Endozytose erhöhte. Weiterhin wurde nur der Wildtyp internalisiert. Um einen möglichen Mechanismus für die Internalisierung des Toxins vorschlagen zu können, wurde Pneumolysin als GFP-markiertes Toxin genutzt. Weiterhin wurden einige Marker für unterschiedliche endozytotische Transportprozesse genutzt um eine Ko-lokalisation mit Pneumolysin-GFP zu ermöglichen. Des Weiteren wurden Inhibitoren für zwei Schlüsselproteine endozytotischer Vorgänge, Dynamin und Myosin II, genutzt. Die Ergebnisse dieser Untersuchungen zeigten, dass Pneumolysin wahrscheinlich durch dynamin- und caveolin-unabhängige Pinozytose in die Zelle aufgenommen wird. Dieser Mechanismus führt zu der Bildung von Caveosomen, deren weiterer Transport, und somit das Schicksal des internalisierten Toxins, bis heute noch nicht aufgeklärt ist. Die Beobachtung, dass Pneumolysin die Gesamtrate an Endozytose erhöht, führte zum dritten Teil dieser Arbeit. Wenn das Toxin die Gesamtrate an Endozytose erhöht, stellt sich die Frage, ob dieser Vorgang der Zerstörung des Toxins – also einer Abwehr der Zelle – dient, oder ob diese Internalisierung eine Strategie des Pathogens ist, um tiefer in das Wirtsgewebe einzudringen. Aktuelle Studien belegen, dass Pneumolysin einen Einfluss auf inflammatorische Antworten des Immunsystems hat. Aus diesem Grund wurden unterschiedliche proinflammatorische Zytokine untersucht. Überraschenderweise zeigte sich nur eine Erhöhung des Interleukin 6 nach der Toxinbehandlung. Weiterhin hatten die Endozytoseinhibitoren keinen Effekt auf die Produktion dieses proinflammatorischen Zytokins. Pneumolysin führt also zu einem Anstieg der Interleukin 6 Produktion, diese Produktion ist jedoch unabhängig von der Internalisierung dieses Toxins. Die Produktion dieses Interleukins würde zur Produktion der Akute-Phase Proteine, der Aktivierung der T-Zell Antwort, zu Wachstum und Zelldifferenzierung führen. Einerseits könnte diese Aktivierung die Infektion durch das Pathogen bekämpfen. Andererseits könnte S. pneumoniae die erhöhte Produktion durch PLY an Interleukin 6 nutzen um weiter in das Wirtsgewebe vordringen zu können. Diese Frage sollte noch durch weitere Experimente untersucht werden

    C3 rho-inhibitor for targeted pharmacological manipulation of osteoclast-like cells.

    Get PDF
    The C3 toxins from Clostridium botulinum (C3bot) and Clostridium limosum (C3lim) as well as C3-derived fusion proteins are selectively taken up into the cytosol of monocytes/macrophages where the C3-catalyzed ADP-ribosylation of Rho results in inhibition of Rho-signalling and characteristic morphological changes. Since the fusion toxin C2IN-C3lim was efficiently taken up into and inhibited proliferation of murine macrophage-like RAW 264.7 cells, its effects on RAW 264.7-derived osteoclasts were investigated. C2IN-C3lim was taken up into differentiated osteoclasts and decreased their resorption activity. In undifferentiated RAW 264.7 cells, C2IN-C3lim-treatment significantly decreased their differentiation into osteoclasts as determined by counting the multi-nucleated, TRAP-positive cells. This inhibitory effect was concentration- and time-dependent and most efficient when C2IN-C3lim was applied in the early stage of osteoclast-formation. A single-dose application of C2IN-C3lim at day 0 and its subsequent removal at day 1 reduced the number of osteoclasts in a comparable manner while C2IN-C3lim-application at later time points did not reduce the number of osteoclasts to a comparable degree. Control experiments with an enzymatically inactive C3 protein revealed that the ADP-ribosylation of Rho was essential for the observed effects. In conclusion, the results indicate that Rho-activity is crucial during the early phase of osteoclast-differentiation. Other bone cell types such as pre-osteoblastic cells were not affected by C2IN-C3lim. Due to their cell-type selective and specific mode of action, C3 proteins and C3-fusions might be valuable tools for targeted pharmacological manipulation of osteoclast formation and activity, which could lead to development of novel therapeutic strategies against osteoclast-associated diseases

    A recombinant fusion toxin based on enzymatic inactive C3bot1 selectively targets macrophages.

    Get PDF
    BACKGROUND: The C3bot1 protein (~23 kDa) from Clostridium botulinum ADP-ribosylates and thereby inactivates Rho. C3bot1 is selectively taken up into the cytosol of monocytes/macrophages but not of other cell types such as epithelial cells or fibroblasts. Most likely, the internalization occurs by a specific endocytotic pathway via acidified endosomes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested whether enzymatic inactive C3bot1E174Q serves as a macrophage-selective transport system for delivery of enzymatic active proteins into the cytosol of such cells. Having confirmed that C3bot1E174Q does not induce macrophage activation, we used the actin ADP-ribosylating C2I (∼50 kDa) from Clostridium botulinum as a reporter enzyme for C3bot1E174Q-mediated delivery into macrophages. The recombinant C3bot1E174Q-C2I fusion toxin was cloned and expressed as GST-protein in Escherichia coli. Purified C3bot1E174Q-C2I was recognized by antibodies against C2I and C3bot and showed C2I-specific enzyme activity in vitro. When applied to cultured cells C3bot1E174Q-C2I ADP-ribosylated actin in the cytosol of macrophages including J774A.1 and RAW264.7 cell lines as well as primary cultured human macrophages but not of epithelial cells. Together with confocal fluorescence microscopy experiments, the biochemical data indicate the selective uptake of a recombinant C3-fusion toxin into the cytosol of macrophages. CONCLUSIONS/SIGNIFICANCE: In summary, we demonstrated that C3bot1E174Q can be used as a delivery system for fast, selective and specific transport of enzymes into the cytosol of living macrophages. Therefore, C3-based fusion toxins can represent valuable molecular tools in experimental macrophage pharmacology and cell biology as well as attractive candidates to develop new therapeutic approaches against macrophage-associated diseases

    Application of C2IN-C3lim in the early stage of differentiation inhibits osteoclast-formation.

    No full text
    <p>C2IN-C3lim (0.5 and 2µg/mL) was added from day 0 on (A), from day 1 on (B), from day 2 on (C) or at day 0 only with subsequent medium change on day 1 (D). The number of multi-nucleated (at least three nuclei) and TRAP-positive osteoclasts per well (96 well plate) were determined at day 5. </p

    Uptake of C2IN-C3lim into differentiating osteoclasts and morhophological changes caused by C2IN-C3lim.

    No full text
    <p>RAW264.7 cells which were grown in the presence of RANKL to induce differentiation to osteoclasts. Cells were left untreated for control (A) or treated with C2IN-C3lim (2 µg/mL) at day 0 and 2 (B and C). At day 5, osteoclasts were stained for actin (red), nuclei (blue) and C3 (green) and cells analyzed by phase contrast microscopy (left row) and fluorescence microscopy. </p

    Specific and selective uptake of C2IN-C3lim into macrophage-like RAW 264.7 cells.

    No full text
    <p><i>A</i>. ADP-ribosylation status of Rho in RAW 264.7 cells treated with C2IN-C3lim. Cells were incubated with 0.5 or 2 µg/mL of C2IN-C3lim or left untreated for control. The cells were lysed after 6 and 24 h and equal amounts of lysate proteins incubated with fresh C3bot1 and biotin-labelled NAD<sup>+</sup>. The biotinylated, i.e. ADP-ribosylated Rho is shown. Equal amounts of loaded protein were confirmed by Ponceau S staining of the blotted proteins (not shown). <i>B</i>. C2I alone is not taken up into RAW 264.7 cells. Cells were incubated with C2I (2 µg/mL) alone or with C2I (0.4 µg/mL) + C2IIa (0.8 µg/mL) or left untreated for control. After 6 h cells were lysed and equal amounts of lysate proteins incubated with fresh C2I and biotin-labelled NAD<sup>+</sup>. The biotinylated, i.e. ADP-ribosylated actin is shown. Equal amounts of loaded protein were confirmed by Ponceau S staining of the blotted proteins (not shown). <i>C</i>. C2IN-C3lim is not taken up into pre-osteoblastic MC3T3 cells under comparable conditions. Cells were incubated with C2IN-C3lim (5 µg/mL) or with C2IN-C3lim (1 µg/mL) + C2IIa (2 µg/mL) or left untreated for control. After 6 h the cells were lysed and the ADP-ribosylation status of Rho determined as described in A. The biotinylated, i.e. ADP-ribosylated Rho is shown. Equal amounts of loaded protein were confirmed by Ponceau S staining of the blotted proteins (not shown).</p

    Motivational interviewing as a tool to enhance access to mental health treatment in adolescents with chronic medical conditions and need for psychological support (COACH-MI): study protocol for a clusterrandomised controlled trial

    No full text
    BACKGROUND: This cluster-randomised monocentric controlled trial focuses on improving the uptake symptoms of mental health care in adolescents with chronic medical conditions who have been identified by screening to have depression or anxiety. The study aims to determine the efficacy of motivational interviewing (MI) delivered by trained physicians to increase 12- to 20-year-old adolescents' utilisation of psychological health care for symptoms of anxiety or depression. METHODS/DESIGN: In this single-centre approach, n = 1,000 adolescents will be screened (using PHQ-9 and GAD-7), and adolescents with results indicative of anxiety or depressive symptoms (n = 162) will be advised to seek psychological health care in clusters from treating physicians in specialised outpatient departments. Participants who screen positive will receive either two sessions of MI or treatment as usual (TAU; regarded as the typical daily clinical practice), which is focused on recommending them to seek psychological health care for further evaluation. MI efficacy will be compared to the current TAU as the control condition. The primary outcome is the utilisation rate of psychological health care after counselling by an MI-trained physician vs. an untrained physician. Additionally, reasons for not claiming psychological support and changes in disease-related parameters will be evaluated in a 6-month follow-up session. DISCUSSION: This trial will evaluate the feasibility of MI as a way to improve the utilisation of mental health-care services by adolescents who need further support other than that provided by standard care for chronic diseases. Physicians offering MI to adolescents may serve as a model for optimising health-care management in daily clinical practice, which may improve adolescents' long-term well-being by improving adherence to medical treatment and preventing negative lifelong consequences into adulthood
    corecore