6,287 research outputs found
Detection of TeV emission from the intriguing composite SNR G327.1-1.1
The shock wave of supernova remnants (SNRs) and the wind termination shock in
pulsar wind nebula (PWNe) are considered as prime candidates to accelerate the
bulk of Galactic cosmic ray (CR) ions and electrons. The SNRs hosting a PWN
(known as composite SNRs) provide excellent laboratories to test these
hypotheses. The SNR G327.1-1.1 belongs to this category and exhibits a shell
and a bright central PWN, both seen in radio and X-rays. Interestingly, the
radio observations of the PWN show an extended blob of emission and a curious
narrow finger structure pointing towards the offset compact X-ray source
indicating a possible fast moving pulsar in the SNR and/or an asymmetric
passage of the reverse shock. We report here on the observations, for a total
of 45 hours, of the SNR G327.1-1.1 with the H.E.S.S. telescope array which
resulted in the detection of TeV gamma-ray emission in spatial coincidence with
the PWN.Comment: Proceeding of the 32nd ICRC, August 11-18 2011, Beijing, Chin
Deep-HiTS: Rotation Invariant Convolutional Neural Network for Transient Detection
We introduce Deep-HiTS, a rotation invariant convolutional neural network
(CNN) model for classifying images of transients candidates into artifacts or
real sources for the High cadence Transient Survey (HiTS). CNNs have the
advantage of learning the features automatically from the data while achieving
high performance. We compare our CNN model against a feature engineering
approach using random forests (RF). We show that our CNN significantly
outperforms the RF model reducing the error by almost half. Furthermore, for a
fixed number of approximately 2,000 allowed false transient candidates per
night we are able to reduce the miss-classified real transients by
approximately 1/5. To the best of our knowledge, this is the first time CNNs
have been used to detect astronomical transient events. Our approach will be
very useful when processing images from next generation instruments such as the
Large Synoptic Survey Telescope (LSST). We have made all our code and data
available to the community for the sake of allowing further developments and
comparisons at https://github.com/guille-c/Deep-HiTS
Mol. Cell. Proteomics
Chemical cross-linking in combination with mass spectrometric analysis offers the potential to obtain low-resolution structural information from proteins and protein complexes. Identification of peptides connected by a cross-link provides direct evidence for the physical interaction of amino acid side chains, information that can be used for computational modeling purposes. Despite impressive advances that were made in recent years, the number of experimentally observed cross-links still falls below the number of possible contacts of cross-linkable side chains within the span of the cross-linker. Here, we propose two complementary experimental strategies to expand cross-linking data sets. First, enrichment of cross-linked peptides by size exclusion chromatography selects cross-linked peptides based on their higher molecular mass, thereby depleting the majority of unmodified peptides present in proteolytic digests of cross-linked samples. Second, we demonstrate that the use of proteases in addition to trypsin, such as Asp-N, can additionally boost the number of observable cross-linking sites. The benefits of both SEC enrichment and multiprotease digests are demonstrated on a set of model proteins and the improved workflow is applied to the characterization of the 20S proteasome from rabbit and Schizosaccharomyces pombe
Capability of Cherenkov Telescopes to Observe Ultra-fast Optical Flares
The large optical reflector (~ 100 m^2) of a H.E.S.S. Cherenkov telescope was
used to search for very fast optical transients of astrophysical origin. 43
hours of observations targeting stellar-mass black holes and neutron stars were
obtained using a dedicated photometer with microsecond time resolution. The
photometer consists of seven photomultiplier tube pixels: a central one to
monitor the target and a surrounding ring of six pixels to veto background
events. The light curves of all pixels were recorded continuously and were
searched offline with a matched-filtering technique for flares with a duration
of 2 us to 100 ms. As expected, many unresolved (500 us)
background events originating in the earth's atmosphere were detected. In the
time range 3 to 500 us the measurement is essentially background-free, with
only eight events detected in 43 h; five from lightning and three presumably
from a piece of space debris. The detection of flashes of brightness ~ 0.1 Jy
and only 20 us duration from the space debris shows the potential of this setup
to find rare optical flares on timescales of tens of microseconds. This
timescale corresponds to the light crossing time of stellar-mass black holes
and neutron stars.Comment: Accepted for publication in Astroparticle Physics, 8 pages, 9
figures, 1 tabl
Central Acceptance Testing for Camera Technologies for CTA
The Cherenkov Telescope Array (CTA) is an international initiative to build
the next generation ground based very-high energy gamma-ray observatory. It
will consist of telescopes of three different sizes, employing several
different technologies for the cameras that detect the Cherenkov light from the
observed air showers. In order to ensure the compliance of each camera
technology with CTA requirements, CTA will perform central acceptance testing
of each camera technology. To assist with this, the Camera Test Facilities
(CTF) work package is developing a detailed test program covering the most
important performance, stability, and durability requirements, including
setting up the necessary equipment. Performance testing will include a wide
range of tests like signal amplitude, time resolution, dead-time determination,
trigger efficiency, performance testing under temperature and humidity
variations and several others. These tests can be performed on fully-integrated
cameras using a portable setup at the camera construction sites. In addition,
two different setups for performance tests on camera sub-units are being built,
which can provide early feedback for camera development. Stability and
durability tests will include the long-term functionality of movable parts,
water tightness of the camera housing, temperature and humidity cycling,
resistance to vibrations during transport or due to possible earthquakes,
UV-resistance of materials and several others. Some durability tests will need
to be contracted out because they will need dedicated equipment not currently
available within CTA. The planned test procedures and the current status of the
test facilities will be presented.Comment: 8 pages, 3 figures. In Proceedings of the 34th International Cosmic
Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions
at arXiv:1508.0589
- …