7 research outputs found

    Adult-type granulosa cell tumor of the ovary : a FOXL2-centric disease

    Get PDF
    Adult-type granulosa cell tumors (aGCTs) account for 90% of malignant ovarian sex cord-stromal tumors and 2-5% of all ovarian cancers. These tumors are usually diagnosed at an early stage and are treated with surgery. However, one-third of patients relapse between 4 and 8 years after initial diagnosis, and there are currently no effective treatments other than surgery for these relapsed patients. As the majority of aGCTs (>95%) harbor a somatic mutation in FOXL2 (c.C402G; p.C134W), the aim of this study was to identify genetic mutations besides FOXL2 C402G in aGCTs that could explain the clinical diversity of this disease. Whole-genome sequencing of 10 aGCTs and their matched normal blood was performed to identify somatic mutations. From this analysis, a custom amplicon-based panel was designed to sequence 39 genes of interest in a validation cohort of 83 aGCTs collected internationally. KMT2D inactivating mutations were present in 10 of 93 aGCTs (10.8%), and the frequency of these mutations was similar between primary and recurrent aGCTs. Inactivating mutations, including a splice site mutation in candidate tumor suppressor WNK2 and nonsense mutations in PIK3R1 and NLRC5, were identified at a low frequency in our cohort. Missense mutations were identified in cell cycle-related genes TP53, CDKN2D, and CDK1. From these data, we conclude that aGCTs are comparatively a homogeneous group of tumors that arise from a limited set of genetic events and are characterized by the FOXL2 C402G mutation. Secondary mutations occur in a subset of patients but do not explain the diverse clinical behavior of this disease. As the FOXL2 C402G mutation remains the main driver of this disease, progress in the development of therapeutics for aGCT would likely come from understanding the functional consequences of the FOXL2 C402G mutation.Peer reviewe

    TERT promoter mutation in AGCT

    Get PDF
    The telomerase reverse transcriptase (TERT) gene is highly expressed in stem cells and silenced upon differentiation. Cancer cells can attain immortality by activating TERT to maintain telomere length and telomerase activity, which is a crucial step of tumorigenesis. Two somatic mutations in the TERT promoter (C228T; C250T) have been identified as gain-of-function mutations that promote transcriptional activation of TERT in multiple cancers, such as melanoma and glioblastoma. A recent study investigating TERT promoter mutations in ovarian carcinomas found C228T and C250T mutations in 15.9% of clear cell carcinomas. However, it is unknown whether these mutations are frequent in other ovarian cancer subtypes, in particular, sex cordstromal tumors including adult granulosa cell tumors (AGCTs). We performed whole genome sequencing on ten AGCTs with matched normal blood and identified a TERT C228T promoter mutation in 50% of tumors. We found that AGCT with mutated TERT promoter have increased expression of TERT mRNA compared to those with wild-type TERT promoter. AGCT with TERT C228T mutation exhibited significantly longer telomeres compared to AGCT with TERT wild-type promoter. Extension cohort analysis using allelic discrimination revealed the TERT C228T mutation in 51 of 229 primary AGCTs (22%), 24 of 58 recurrent AGCTs (41%), and 1 of 22 other sex cord-stromal tumors (5%). There was a significant difference in overall survival between patients with TERT C228T promoter mutation in the primary tumors and those without it (p = 0.00253, log rank test). In seven AGCTs, we found the TERT C228T mutation present in recurrent tumors and absent in the corresponding primary tumor. Our data suggests that TERT C228T mutations may have an important role in progression of AGCT. Telomeres are conserved, repetitive (TTAGGG) DNA-protein complexes that are added to the ends of chromosomes by the enzyme telomerase to prevent DNA damage and maintain replicative potential. Telomere attrition during DNA replication induces genomic instability that can result in tumorigenesis. Telomerase consists of a catalytic protein subunit known as telomerase reverse transcriptase (TERT) and a functional RNA called telomerase RNA component (TERC). TERT is highly expressed in stem cells and is silenced upon differentiation in somatic cells. Most cancer cells attain proliferative immortality by upregulating the TERT gene to maintain telomere length and telomerase activity. The known mechanisms of telomerase activation include mutations in the TERT promoter, TERT gene amplification, CpG methylation at the TERT promoter, changes in alternative splicing of TERT pre-mRNA and upregulation of transcriptional activators. Approximately 90% of cancers express TERT, while the remaining 10-15% of cancers maintain their telomere length through a telomerase-independent method called alternative lengthening of telomeres. TERT promoter mutations were first reported in familial melanoma and subsequently in sporadic melanoma. There are two hot-spot TERT promoter mutations, C228T and C250T, each generates an identical 11 base pair sequence containing a consensus binding motif for ETS transcription factors, and functions as either a transcriptional activator or repressor to regulate telomerase expression. These two mutations are implicated in the activation of telomerase in other malignances such as central nervous system tumors, hepatocellular carcinomas, bladder cancers and thyroid cancers. A recent study on TERT promoter mutations in gynecological malignancies, including ovarian and uterine carcinomas, reported TERT hot-spot mutations in 15.9% of ovarian clear cell carcinomas. However, it is unknown whether TERT promoter mutations are frequent in sex cord-stromal tumors, including adult granulosa cell tumors (AGCTs). In this study, we evaluated the biological and clinical significance of TERT promoter mutations, specifically C228T, in total of 251 primary ovarian sex cord-stromal tumors.Medicine, Faculty ofScience, Faculty ofNon UBCComputer Science, Department ofMedical Genetics, Department ofPathology and Laboratory Medicine, Department ofUnreviewedFacult
    corecore