1,133 research outputs found

    Impurity flows and plateau-regime poloidal density variation in a tokamak pedestal

    Get PDF
    In the pedestal of a tokamak, the sharp radial gradients of density and temperature can give rise to poloidal variation in the density of impurities. At the same time, the flow of the impurity species is modified relative to the conventional neoclassical result. In this paper, these changes to the density and flow of a collisional impurity species are calculated for the case when the main ions are in the plateau regime. In this regime it is found that the impurity density can be higher at either the inboard or outboard side. This finding differs from earlier results for banana- or Pfirsch-Schl\"uter-regime main ions, in which case the impurity density is always higher at the inboard side in the absence of rotation. Finally, the modifications to the impurity flow are also given for the other regimes of main-ion collisionality.Comment: 15 pages, 5 figures, submitted to Physics of Plasma

    Kinetic and finite ion mass effects on the transition to relativistic self-induced transparency in laser-driven ion acceleration

    Full text link
    We study kinetic effects responsible for the transition to relativistic self-induced transparency in the interaction of a circularly-polarized laser-pulse with an overdense plasma and their relation to hole-boring and ion acceleration. It is demonstrated using particle-in-cell simulations and an analysis of separatrices in single-electron phase-space, that ion motion can suppress fast electron escape to the vacuum, which would otherwise lead to transition to the relativistic transparency regime. A simple analytical estimate shows that for large laser pulse amplitude a0a_0 the time scale over which ion motion becomes important is much shorter than usually anticipated. As a result, the threshold density above which hole-boring occurs decreases with the charge-to-mass ratio. Moreover, the transition threshold is seen to depend on the laser temporal profile, due to the effect that the latter has on electron heating. Finally, we report a new regime in which a transition from relativistic transparency to hole-boring occurs dynamically during the course of the interaction. It is shown that, for a fixed laser intensity, this dynamic transition regime allows optimal ion acceleration in terms of both energy and energy spread.Comment: Added new material. 15 pages, 12 figure

    Measurements of a Quantum Dot with an Impedance-Matching On-Chip LC Resonator at GHz Frequencies

    Get PDF
    We report the realization of a bonded-bridge on-chip superconducting coil and its use in impedance-matching a highly ohmic quantum dot (QD) to a 3 GHz\rm{3~GHz} measurement setup. The coil, modeled as a lumped-element LCLC resonator, is more compact and has a wider bandwidth than resonators based on coplanar transmission lines (e.g. λ/4\lambda/4 impedance transformers and stub tuners) at potentially better signal-to-noise ratios. In particular for measurements of radiation emitted by the device, such as shot noise, the 50×\times larger bandwidth reduces the time to acquire the spectral density. The resonance frequency, close to 3.25 GHz, is three times higher than that of the one previously reported wire-bonded coil. As a proof of principle, we fabricated an LCLC circuit that achieves impedance-matching to a ∌15 kΩ\rm{\sim 15~k\Omega} load and validate it with a load defined by a carbon nanotube QD of which we measure the shot noise in the Coulomb blockade regime.Comment: 7 pages, 6 figure

    Interpretation of runaway electron synchrotron and bremsstrahlung images

    Full text link
    The crescent spot shape observed in DIII-D runaway electron synchrotron radiation images is shown to result from the high degree of anisotropy in the emitted radiation, the finite spectral range of the camera and the distribution of runaways. The finite spectral camera range is found to be particularly important, as the radiation from the high-field side can be stronger by a factor 10610^6 than the radiation from the low-field side in DIII-D. By combining a kinetic model of the runaway dynamics with a synthetic synchrotron diagnostic we see that physical processes not described by the kinetic model (such as radial transport) are likely to be limiting the energy of the runaways. We show that a population of runaways with lower dominant energies and larger pitch-angles than those predicted by the kinetic model provide a better match to the synchrotron measurements. Using a new synthetic bremsstrahlung diagnostic we also simulate the view of the Gamma Ray Imager (GRI) diagnostic used at DIII-D to resolve the spatial distribution of runaway-generated bremsstrahlung.Comment: 21 pages, 11 figure

    Synchrotron radiation from a runaway electron distribution in tokamaks

    Get PDF
    The synchrotron radiation emitted by runaway electrons in a fusion plasma provides information regarding the particle momenta and pitch-angles of the runaway electron population through the strong dependence of the synchrotron spectrum on these parameters. Information about the runaway density and its spatial distribution, as well as the time evolution of the above quantities, can also be deduced. In this paper we present the synchrotron radiation spectra for typical avalanching runaway electron distributions. Spectra obtained for a distribution of electrons are compared to the emission of mono-energetic electrons with a prescribed pitch-angle. We also examine the effects of magnetic field curvature and analyse the sensitivity of the resulting spectrum to perturbations to the runaway distribution. The implications for the deduced runaway electron parameters are discussed. We compare our calculations to experimental data from DIII-D and estimate the maximum observed runaway energy.Comment: 22 pages, 12 figures; updated author affiliations, fixed typos, added a sentence at the end of section I

    Dome-building volcanic activity in the Oas-Gutai Neogene Volcanic Area, Eastern Carpathians, Romania

    Get PDF
    A complex dome-building volcanic activity developed during a 5 Myr time interval (13.2- 8.0 Ma) in OaƟ-GutĂąi Mts., associated to the intermediate volcanism of the OaƟ-GutĂąi Neogene volcanic area (OG). Numerous domes were built up in the entire volcanic region also triggering both non-explosive and explosive fragmentation volcanic processes. The volcanic forms consist of extrusive domes, lava domes and dome- flows/coulĂ©es and cryptodomes predominantly as solitary domes, or compound domes and dome complexes. The domes are comprised of andesites, dacites and rhyolites (acid andesites and dacites are prevalent). The volcanic rocks show a calc- alkaline and medium to high-K character and typical subduction-zone geochemical signatures. Overall, either subaerial or subaqueous, the dome growth and collapse associated with fragmental explosive or non-explosive processes, was dominantly responsible for most of the volcanic products. Dome emplacement in submarine setting is commonly associated with marginal auto- brecciation, much subordinated explosive events and subsequent resedimentation. Overall, the dome-building volcanic activity in OG is recorded to a monogenetic-type of volcanism. The series of dome-building events which were triggered and controlled by magma-mixing and -mingling processes developed from time to time in different locations of O

    DREAM: a fluid-kinetic framework for tokamak disruption runaway electron simulations

    Get PDF
    Avoidance of the harmful effects of runaway electrons (REs) in plasma-terminating disruptions is pivotal in the design of safety systems for magnetic fusion devices. Here, we describe a computationally efficient numerical tool, that allows for self-consistent simulations of plasma cooling and associated RE dynamics during disruptions. It solves flux-surface averaged transport equations for the plasma density, temperature and poloidal flux, using a bounce-averaged kinetic equation to self-consistently provide the electron current, heat, density and RE evolution, as well as the electron distribution function. As an example, we consider disruption scenarios with material injection and compare the electron dynamics resolved with different levels of complexity, from fully kinetic to fluid modes.Comment: 32 pages, 11 figure

    Low Mach-number collisionless electrostatic shocks and associated ion acceleration

    Full text link
    The existence and properties of low Mach-number (M≳1M \gtrsim 1) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. Using this semi-analytical model, we study the effect of electron-to-ion temperature ratio and presence of impurities on both the maximum shock potential and Mach number. We find that even a small amount of impurities can influence the shock properties significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.Comment: In Plasma Physics and Controlled Fusio
    • 

    corecore