80 research outputs found

    Mixing characteristics of bubble columns with internals for Biomass to liquid synthesis [abstract]

    Get PDF
    Only abstract of poster available.Track II: Transportation and BiofuelsThe use of renewable energy sources is becoming increasingly necessary, if we are to achieve the changes required to address the impacts of global warming. Biomass is the most common form of renewable energy, widely used in the third world but until recently, less so in the Western world. Latterly much attention has been focused on the conversion of biomass to liquid fuels; a process which would greatly increases the potential usefulness of biomass as a renewable resource. Conversion of biomass to liquid is carried out by first gasification of biomass to yield synthetic gas. The synthetic gas can then be converted to liquid fuels using Fischer Tropsch process or transformed to methanol for subsequent use as a chemical, solvent or fuel. For large-scale FT / methanol synthesis the slurry bubble column reactor is the best choice. These reactors offer high conversion and high volumetric productivity when operated in the heterogeneous or churn turbulent regime. Notwithstanding the presence of large diameter bubbles and their short residence time in the liquid, gas-liquid mass transfer is quite fast in this regime due to the effective interaction between bubbles of various sizes. However, despite the simple construction and operation of bubble columns, their scale-up is very difficult due to complex interrelations among the many parameters that determine the behavior of bubble columns. In addition the complexity increases with the presence of cooling internals that affect the hydrodynamics and mixing behavior in bubble columns. Gas phase backmixing is one of the important hydrodynamic parameters to be considered in the scale-up of bubble columns as it can adversely affect the reaction rates and product selectivity. The present investigation focuses on studying the effect of the cooling internals on gas phase mixing behavior. The percentage of internals used in this study is the same percentage used industrially for methanol synthesis (5 % internals) and FT synthesis (25% internals)

    Capacity of public health laws enforcement by health inspectors in state of Selangor, Malaysia

    Get PDF
    A cross sectional study initiated among the Public Health Enforcement Inspectors in state of Selangor, Malaysia in July 2003 using a self administered questionnaire and universal sampling with the purpose to determine the capacity of public health laws enforcement and factors influencing it. A total of 99 respondents from the Health Districts Ofices and I00 respondents from the Local Municipal Health Departments participated in this study. It was found that the level of enforcement is generally low in all the units except for two units; the Food Unit and Sanitary and Hygiene Units. Factors found to influence enforcement capacity are the units' the enforcers work in and the length of service being in the same unit. Further analysis using multiple logistic regression, showed that respondents from the Food Unit (adjusted odds ratio 22; CI 95% : 7.851, 58.896), enforcers from the middle level category (adjusted odds ratio 5; CI 95%: 1.397, 17.630), duration of service of 4 years and above in the same unit (adjusted odds ratio 6; CI 95%: 2.174, 13.747), past acceptance of formal service rewards from their departments (adjusted odds ratio 3; CI 95% : 1.150, 6.917); low exposure to bribery (adjusted odds ratio 46; CI 95% : 2.336, 1000) and have in the past being oflered bribes while on the field (adjusted odds ratio 3; CI 95% : 1.018, 4.772) are associated with higher enforcement capacity. In conclusion; die attention must be looked into the enforcement organization with respect to the duration of service, acknowledgement via service rewards and monitoring of bribes exposure will help shape a better public health laws' enforcement capacity

    Uncovering hidden structures: previously undescribed pseudopodia and ectoplasmic structures in planktonic foraminifera

    Get PDF
    The trophic strategies of cold-water planktonic foraminifera are not well understood due to the challenge of culturing them in polar conditions. Here, we identify previously unknown ectoplasmic and cytoplasmic projections in three species of planktonic foraminifera thriving in polar and subpolar marine environments: Globigerina bulloides, Neogloboquadrina incompta and Neogloboquadrina pachyderma. These structures were observed during routine monitoring of cultured specimens sampled from the Norwegian coast, Greenland Sea and Baffin Bay. Two types of projections were discovered, including permanent and non-permanent structures such as ectoplasmic roots, twigs and twig-like projections, similar to those observed in benthic taxa Cibicides and Cibicidoides. Additionally, a previously undescribed filopodia-like projection was observed in N. pachyderma. We discuss the function, the ecological significance and the potential impact on pelagic processes of the presence of these structures in foraminifera species that occupy diverse niches in the water column. Our findings suggest that these structures may play an important role in the trophic strategies of cold-water planktonic foraminifera, and further research and observations are necessary to fully comprehend their significance in the carbon cycl

    Sea ice and millennial-scale climate variability in the Nordic seas 90 kyr ago to present

    Get PDF
    Publisher's version, source http://doi.org/10.1038/ncomms12247In the light of rapidly diminishing sea ice cover in the Arctic during the present atmospheric warming, it is imperative to study the distribution of sea ice in the past in relation to rapid climate change. Here we focus on glacial millennial-scale climatic events (Dansgaard/Oeschger events) using the sea ice proxy IP25 in combination with phytoplankton proxy data and quantification of diatom species in a record from the southeast Norwegian Sea. We demonstrate that expansion and retreat of sea ice varies consistently in pace with the rapid climate changes 90 kyr ago to present. Sea ice retreats abruptly at the start of warm interstadials, but spreads rapidly during cooling phases of the interstadials and becomes near perennial and perennial during cold stadials and Heinrich events, respectively. Low-salinity surface water and the sea ice edge spreads to the Greenland–Scotland Ridge, and during the largest Heinrich events, probably far into the Atlantic Ocean

    Large-scale culturing of Neogloboquadrina pachyderma, its growth in, and tolerance of, variable environmental conditions

    Get PDF
    The planktic foraminifera Neogloboquadrina pachyderma is a calcifying marine protist and the dominant planktic foraminifera species in the polar oceans, making it a key species in marine polar ecosystems. The calcium carbonate shells of foraminifera are widely used in palaeoclimate studies because their chemical composition reflects the seawater conditions in which they grow. This species provides unique proxy data for past surface ocean hydrography, which can provide valuable insight to future climate scenarios. However, little is known about the response of N. pachyderma to variable and changing environmental conditions. Here, we present observations from large-scale culturing experiments where temperature, salinity and carbonate chemistry were altered independently. We observed overall low mortality, calcification of new chambers and addition of secondary calcite crust in all our treatments. In-culture asexual reproduction events also allowed us to monitor the variable growth of N. pachyderma’s offspring. Several specimens had extended periods of dormancy or inactivity after which they recovered. These observations suggest that N. pachyderma can tolerate, adapt to and calcify within a wide range of environmental conditions. This has implications for the species-level response to ocean warming and acidification, for future studies aiming to culture N. pachyderma and use in palaeoenvironmental reconstruction

    Spatial Changes in Gas Transport and Sediment Stiffness Influenced by Regional Stress: Observations From Piezometer Data Along Vestnesa Ridge, Eastern Fram Strait

    Get PDF
    Gas transport through sediments to the seabed and seepage occurs via advection through pores, faults, and fractures, and as solubility driven gas diffusion. The pore pressure gradient is a key factor in these processes. Yet, in situ measurements for quantitative studies of fluid dynamics and sediment deformation in deep ocean environments remain scarce. In this study, we integrate piezometer data, geotechnical tests, and sediment core analyses to study the pressure regime that controls gas transport along the Vestnesa Ridge in the eastern Fram Strait. The data show a progressive westward decrease in induced pore pressure (i.e., from c. 180 to c. 50 kPa) upon piezometer penetration and undrained shear strength of the sediments, interpreted as a decrease in sediment stiffness. In addition, the data suggest that the upper c. 6 m of sediments may be mechanically damaged due to variations in gas diffusion rates and exsolution. Background pore pressures are mostly at hydrostatic conditions, but localized excess pore pressures (i.e., up to 10 kPa) exist and point toward external controls. When analyzed in conjunction with observations from geophysical data and sediment core analyses, the pore pressure data suggest a spatial change from an advection dominated to a diffusion dominated fluid flow system, influenced by the behavior of sedimentary faults. Understanding gas transport mechanisms and their effect on fine-grained sediments of deep ocean settings is critical for constraining gas hydrate inventories, seepage phenomena and sub-seabed sediment deformations and instabilities

    Deep ocean storage of heat and CO2 in the Fram Strait, Arctic Ocean during the last glacial period

    Get PDF
    MME is funded by the Research Council of Norway and the Co-funding of Regional, National, and International Programmes (COFUND) Marie Sklodowska-Curie Actions under the EU Seventh Framework Programme (FP7), project number 274429, and the Research Council of Norway through its Centres of Excellence funding scheme, grant number 223259.The Fram Strait is the only deep gateway between the Arctic Ocean and the Nordic Seas and thus is a key area to study past changes in ocean circulation and the marine carbon cycle. Here, we study deep ocean temperature, δ18O, carbonate chemistry (i.e., carbonate ion concentration, [CO32-]), and nutrient content in the Fram Strait during the late glacial (35,000-19,000 years BP) and the Holocene based on benthic foraminiferal geochemistry and carbon cycle modelling. Our results indicate a thickening of Atlantic water penetrating into the northern Nordic Seas, forming a subsurface Atlantic intermediate water layer reaching to at least ~2600 m water depth during most of the late glacial period. The recirculating Atlantic layer was characterized by relatively high [CO32-] and low δ13C during the late glacial, and provides evidence for a Nordic Seas source to the glacial North Atlantic intermediate water flowing at 2000-3000 m water depth, most likely via the Denmark Strait. In addition, we discuss evidence for enhanced terrestrial carbon input to the Nordic Seas at ~23.5 ka. Comparing our δ13C and qualitative [CO32-] records with results of carbon cycle box modelling suggests that the total terrestrial CO2 release during this carbon input event was low, slow, or directly to the atmosphere.Publisher PDFPeer reviewe

    Deglacial bottom water warming intensified Arctic methane seepage in the NW Barents Sea

    Get PDF
    Funder: M.M.E. is funded by the Research Council of Norway and the Co-funding of Regional, National, and International Programmes (COFUND) – Marie Skłodowska-Curie Actions under the EU Seventh Framework Programme (FP7), project number 274429, and the Tromsø Forskningsstiftelse, project number A31720.AbstractChanges in the Arctic climate-ocean system can rapidly impact carbon cycling and cryosphere. Methane release from the seafloor has been widespread in the Barents Sea since the last deglaciation, being closely linked to changes in pressure and bottom water temperature. Here, we present a post-glacial bottom water temperature record (18,000–0 years before present) based on Mg/Ca in benthic foraminifera from an area where methane seepage occurs and proximal to a former Arctic ice-sheet grounding zone. Coupled ice sheet-hydrate stability modeling shows that phases of extreme bottom water temperature up to 6 °C and associated with inflow of Atlantic Water repeatedly destabilized subsurface hydrates facilitating the release of greenhouse gasses from the seabed. Furthermore, these warming events played an important role in triggering multiple collapses of the marine-based Svalbard-Barents Sea Ice Sheet. Future warming of the Atlantic Water could lead to widespread disappearance of gas hydrates and melting of the remaining marine-terminating glaciers.</jats:p
    • …
    corecore