944 research outputs found

    On the equation of state of a dense columnar liquid crystal

    Full text link
    An accurate description of a columnar liquid crystal of hard disks at high packing fractions is presented using an improved free-volume theory. It is shown that the orientational entropy of the disks in the one-dimensional fluid direction leads to a different high-density scaling pressure compared to the prediction from traditional cell theory. Excellent quantitative agreement is found with recent Monte-Carlo simulation results for various thermodynamic and structural properties of the columnar state.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let

    Physical and Inorganic Chemistry The Direct Calculation of Optical Rotatory Strengths

    Get PDF
    Abstract: We describe a program for evaluating the optical rotatory strength of any molecule for which a Slater basis molecular orbital wave function is available. The electric transition moment is evaluated in the gradient formalism. No integrals are neglected. Extended Huckel wave functions are then used to calculate the rotatory strength of some methyl cyclohexanones. The effect of methyl group conformation is found to be significant. Similar calculations yield rotatory strengths for different excited configurations of a twisted butadiene. Perturbation by a nearby u level affects the strength of two configurations. Configuration interaction among butadiene excitations introduces cross terms which subtract from the pure configuration strength near an s-cis geometry. Quantitative agreement with experiment is not achieved for any of the cases studied. quantum mechanical theory of optical rotation where pe and v, are the electric and magnetic moment vectors, respectively. A one-electron version of the theory was applied to molecules in a brilliant series of investigations by the Princeton group. Fundamental to their approach was a factorization of the problem into localized symmetric chromophores asymmetrically perturbed by neighboring groups of atoms. The perturbation often took the form of mixing into the symmetric chromophore functions asymmetric contributions from atomic orbitals of higher principal quantum number, e.g., 3d orbitals on carbon. There existed a pertinent rationale for this approach in the 1930's. The procedure was retained in the course of the remarkable theoretical and experimental revival of optical dispersion studies that occurred some 2

    Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization

    Get PDF
    International audienceBy coordinating the design and distribution of global climate model simulations of the past, current, and future climate, the Coupled Model Intercomparison Project (CMIP) has become one of the foundational elements of climate science. However, the need to address an ever-expanding range of scientific questions arising from more and more research communities has made it necessary to revise the organization of CMIP. After a long and wide community consultation, a new and more federated structure has been put in place. It consists of three major elements: (1) a handful of common experiments, the DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP historical simulations (1850–near present) that will maintain continuity and help document basic characteristics of models across different phases of CMIP; (2) common standards, coordination, infrastructure, and documentation that will facilitate the distribution of model outputs and the characterization of the model ensemble; and (3) an ensemble of CMIP-Endorsed Model Intercomparison Projects (MIPs) that will be specific to a particular phase of CMIP (now CMIP6) and that will build on the DECK and CMIP historical simulations to address a large range of specific questions and fill the scientific gaps of the previous CMIP phases. The DECK and CMIP historical simulations, together with the use of CMIP data standards, will be the entry cards for models participating in CMIP. Participation in CMIP6-Endorsed MIPs by individual modelling groups will be at their own discretion and will depend on their scientific interests and priorities. With the Grand Science Challenges of the World Climate Research Programme (WCRP) as its scientific backdrop, CMIP6 will address three broad questions: – How does the Earth system respond to forcing? – What are the origins and consequences of systematic model biases? – How can we assess future climate changes given internal climate variability, predictability, and uncertainties in scenarios? This CMIP6 overview paper presents the background and rationale for the new structure of CMIP, provides a detailed description of the DECK and CMIP6 historical simulations, and includes a brief introduction to the 21 CMIP6-Endorsed MIPs

    On possible skewon effects on light propagation

    Full text link
    We start from a local and linear spacetime relation between the electromagnetic excitation and the field strength. Then we study the generally covariant Fresnel surfaces for light rays and light waves. The metric and the connection of spacetime are left unspecified. Accordingly, our framework is ideally suited for a search of possible violations of the Lorentz symmetry in the photon sector of the extended standard model. We discuss how the skewon part of the constitutive tensor, if suitably parametrized, influences the Fresnel surfaces and disturbs the light cones of vacuum electrodynamics. Conditions are specified that yield the reduction of the original quartic Fresnel surface to the double light cone structure (birefringence) and to the single light cone. Qualitatively, the effects of the real skewon field can be compared to those in absorbing material media. In contrast, the imaginary skewon field can be interpreted in terms of non-absorbing media with natural optical activity and Faraday effects. The astrophysical data on gamma-ray bursts are used for deriving an upper limit for the magnitude of the skewon field.Comment: Revtex, 29 pages, 10 figures, references added, text as in the published versio

    The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century

    Get PDF
    Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an "ensemble of opportunity" of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21st century, up-to and after the time when ozone concentrations return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels

    Regime-oriented causal model evaluation of Atlantic–Pacific teleconnections in CMIP6

    Get PDF
    The climate system and its spatio-temporal changes are strongly affected by modes of long-term internal variability, like the Pacific decadal variability (PDV) and the Atlantic multidecadal variability (AMV). As they alternate between warm and cold phases, the interplay between PDV and AMV varies over decadal to multidecadal timescales. Here, we use a causal discovery method to derive fingerprints in the Atlantic–Pacific interactions and to investigate their phase-dependent changes. Dependent on the phases of PDV and AMV, different regimes with characteristic causal fingerprints are identified in reanalyses in a first step. In a second step, a regime-oriented causal model evaluation is performed to evaluate the ability of models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6) in representing the observed changing interactions between PDV, AMV and their extra-tropical teleconnections. The causal graphs obtained from reanalyses detect a direct opposite-sign response from AMV to PDV when analyzing the complete 1900–2014 period and during several defined regimes within that period, for example, when AMV is going through its negative (cold) phase. Reanalyses also demonstrate a same-sign response from PDV to AMV during the cold phase of PDV. Historical CMIP6 simulations exhibit varying skill in simulating the observed causal patterns. Generally, large-ensemble (LE) simulations showed better network similarity when PDV and AMV were out of phase compared to other regimes. Also, the two largest ensembles (in terms of number of members) were found to contain realizations with similar causal fingerprints to observations. For most regimes, these same models showed higher network similarity when compared to each other. This work shows how causal discovery on LEs complements the available diagnostics and statistical metrics of climate variability to provide a powerful tool for climate model evaluation.</p

    Multi-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate in 2000 and 2030

    Get PDF
    The global impact of shipping on atmospheric chemistry and radiative forcing, as well as the associated uncertainties, have been quantified using an ensemble of ten state-of-the-art atmospheric chemistry models and a predefined set of emission data. The analysis is performed for present-day conditions ( year 2000) and for two future ship emission scenarios. In one scenario ship emissions stabilize at 2000 levels; in the other ship emissions increase with a constant annual growth rate of 2.2% up to 2030 ( termed the "Constant Growth Scenario" (CGS)). Most other anthropogenic emissions follow the IPCC ( Intergovernmental Panel on Climate Change) SRES ( Special Report on Emission Scenarios) A2 scenario, while biomass burning and natural emissions remain at year 2000 levels. An intercomparison of the model results with observations over the Northern Hemisphere (25 degrees - 60 degrees N) oceanic regions in the lower troposphere showed that the models are capable to reproduce ozone (O-3) and nitrogen oxides (NOx= NO+ NO2) reasonably well, whereas sulphur dioxide (SO2) in the marine boundary layer is significantly underestimated. The most pronounced changes in annual mean tropospheric NO2 and sulphate columns are simulated over the Baltic and North Seas. Other significant changes occur over the North Atlantic, the Gulf of Mexico and along the main shipping lane from Europe to Asia, across the Red and Arabian Seas. Maximum contributions from shipping to annual mean near-surface O-3 are found over the North Atlantic ( 5 - 6 ppbv in 2000; up to 8 ppbv in 2030). Ship contributions to tropospheric O3 columns over the North Atlantic and Indian Oceans reach 1 DU in 2000 and up to 1.8 DU in 2030. Tropospheric O-3 forcings due to shipping are 9.8 +/- 2.0 mW/m(2) in 2000 and 13.6 +/- 2.3 mW/m(2) in 2030. Whilst increasing O-3, ship NOx simultaneously enhances hydroxyl radicals over the remote ocean, reducing the global methane lifetime by 0.13 yr in 2000, and by up to 0.17 yr in 2030, introducing a negative radiative forcing. The models show future increases in NOx and O-3 burden which scale almost linearly with increases in NOx emission totals. Increasing emissions from shipping would significantly counteract the benefits derived from reducing SO2 emissions from all other anthropogenic sources under the A2 scenario over the continents, for example in Europe. Globally, shipping contributes 3% to increases in O-3 burden between 2000 and 2030, and 4.5% to increases in sulphate under A2/CGS. However, if future ground based emissions follow a more stringent scenario, the relative importance of ship emissions will increase. Inter-model differences in the simulated O-3 contributions from ships are significantly smaller than estimated uncertainties stemming from the ship emission inventory, mainly the ship emission totals, the distribution of the emissions over the globe, and the neglect of ship plume dispersion

    The nonlinear time-dependent response of isotactic polypropylene

    Full text link
    Tensile creep tests, tensile relaxation tests and a tensile test with a constant rate of strain are performed on injection-molded isotactic polypropylene at room temperature in the vicinity of the yield point. A constitutive model is derived for the time-dependent behavior of semi-crystalline polymers. A polymer is treated as an equivalent network of chains bridged by permanent junctions. The network is modelled as an ensemble of passive meso-regions (with affine nodes) and active meso-domains (where junctions slip with respect to their positions in the bulk medium with various rates). The distribution of activation energies for sliding in active meso-regions is described by a random energy model. Adjustable parameters in the stress--strain relations are found by fitting experimental data. It is demonstrated that the concentration of active meso-domains monotonically grows with strain, whereas the average potential energy for sliding of junctions and the standard deviation of activation energies suffer substantial drops at the yield point. With reference to the concept of dual population of crystalline lamellae, these changes in material parameters are attributed to transition from breakage of subsidiary (thin) lamellae in the sub-yield region to fragmentation of primary (thick) lamellae in the post-yield region of deformation.Comment: 29 pages, 12 figure

    Mixed valency in cerium oxide crystallographic phases: Determination of valence of the different cerium sites by the bond valence method

    Get PDF
    We have applied the bond valence method to cerium oxides to determine the oxidation states of the Ce ion at the various site symmetries of the crystals. The crystals studied include cerium dioxide and the two sesquioxides along with some selected intermediate phases which are crystallographically well characterized. Our results indicate that cerium dioxide has a mixed-valence ground state with an f-electron population on the Ce site of 0.27 while both the A- and C-sesquioxides have a nearly pure f^1 configuration. The Ce sites in most of the intermediate oxides have non-integral valences. Furthermore, many of these valences are different from the values predicted from a naive consideration of the stoichiometric valence of the compound

    Spectroscopy of free radicals and radical containing entrance-channel complexes in superfluid helium nano-droplets

    Get PDF
    The spectroscopy of free radicals and radical containing entrance-channel complexes embedded in superfluid helium nano-droplets is reviewed. The collection of dopants inside individual droplets in the beam represents a micro-canonical ensemble, and as such each droplet may be considered an isolated cryo-reactor. The unique properties of the droplets, namely their low temperature (0.4 K) and fast cooling rates (1016\sim10^{16} K s1^{-1}) provides novel opportunities for the formation and high-resolution studies of molecular complexes containing one or more free radicals. The production methods of radicals are discussed in light of their applicability for embedding the radicals in helium droplets. The spectroscopic studies performed to date on molecular radicals and on entrance / exit-channel complexes of radicals with stable molecules are detailed. The observed complexes provide new information on the potential energy surfaces of several fundamental chemical reactions and on the intermolecular interactions present in open-shell systems. Prospects of further experiments of radicals embedded in helium droplets are discussed, especially the possibilities to prepare and study high-energy structures and their controlled manipulation, as well as the possibility of fundamental physics experiments.Comment: 25 pages, 12 figures, 4 tables (RevTeX
    corecore