104 research outputs found

    Cerebrospinal fluid neurogranin in an inducible mouse model of neurodegeneration: A translatable marker of synaptic degeneration

    Get PDF
    Synapse impairment is thought to be an early event in Alzheimer's disease (AD); dysfunction and loss of synapses are linked to cognitive symptoms that precede neuronal loss and neurodegeneration. Neurogranin (Ng) is a somatodendritic protein that has been shown to be reduced in brain tissue but increased in the cerebrospinal fluid (CSF) of AD patients compared to age-matched controls. High levels of CSF Ng have been shown to reflect a more rapid AD progression. To gauge the translational value of Ng as a biomarker, we developed a new, highly sensitive, digital enzyme-linked immunosorbent assay (ELISA) on the Simoa platform to measure Ng in both mouse and human CSF. We investigated and confirmed that Ng levels are increased in the CSF of patients with AD compared to controls. In addition, we explored how Ng is altered in the brain and CSF of transgenic mice that display progressive neuronal loss and synaptic degeneration following the induction of p25 overexpression. In this model, we found that Ng levels increased in CSF when neurodegeneration was induced, peaking after 2 weeks, while they decreased in brain. Our data suggest that CSF Ng is a biomarker of synaptic degeneration with translational value

    Normal and altered masticatory load impact on the range of craniofacial shape variation: An analysis of pre-Hispanic and modern populations of the American Southern Cone

    No full text
    The reduction of masticatory load intensity resulting from dietary changes in human evolution has been proposed as an important factor that alters craniofacial shape in past and current populations. However, its impact on craniofacial variation and on the perceived differences among populations is unclear. The maxillomandibular relationship, which alters masticatory force direction, is a factor often neglected but it can contribute to variation in craniofacial morphology, particularly among modern/urban populations where the prevalence of dental malocclusions is greater than in prehistoric populations. This study investigates the influence of masticatory load intensity and maxillomandibular relationship as a proxy for force direction on the human craniofacial skeleton. By using 3D imaging and geometric morphometrics, we analyzed craniofacial shape variation among 186 individuals from pre-Hispanic and modern Chilean and Argentinean populations that differ in diet consistency (a proxy for masticatory load intensity) and maxillomandibular relationship. We predicted that masticatory load would have a subtle effect on the upper craniofacial bones and that this would be more marked in the maxilla. Our results showed no clear influence of masticatory load on craniofacial shape, particularly in modern/urban populations. Allometry, on the contrary, shows a stronger effect. The degree of integration between the upper craniofacial bones and the load-bearing maxilla depends on masticatory load intensity, decreasing from high to low but showing a conservative pattern of covariation among the groups. The degree of variation in the shape of the maxilla is greater than the upper craniofacial bones. These results suggest that masticatory load has a limited effect in determining differences in craniofacial morphology among populations. This effect is slightly greater for the maxillary region of the face. We propose that the reduction of functional constraints is key to greater shape variation found in modern/urban populations
    • …
    corecore