408 research outputs found

    An extra dimension in protein tagging by quantifying universal proteotypic peptides using targeted proteomics

    Get PDF
    The use of protein tagging to facilitate detailed characterization of target proteins has not only revolutionized cell biology, but also enabled biochemical analysis through efficient recovery of the protein complexes wherein the tagged proteins reside. The endogenous use of these tags for detailed protein characterization is widespread in lower organisms that allow for efficient homologous recombination. With the recent advances in genome engineering, tagging of endogenous proteins is now within reach for most experimental systems, including mammalian cell lines cultures. In this work, we describe the selection of peptides with ideal mass spectrometry characteristics for use in quantification of tagged proteins using targeted proteomics. We mined the proteome of the hyperthermophile Pyrococcus furiosus to obtain two peptides that are unique in the proteomes of all known model organisms (proteotypic) and allow sensitive quantification of target proteins in a complex background. By combining these 'Proteotypic peptides for Quantification by SRM' (PQS peptides) with epitope tags, we demonstrate their use in co-immunoprecipitation experiments upon transfection of protein pairs, or after introduction of these tags in the endogenous proteins through genome engineering. Endogenous protein tagging for absolute quantification provides a powerful extra dimension to protein analysis, allowing the detailed characterization of endogenous proteins

    Therapeutic applications of SAMMSON lncRNA inhibition in uveal melanoma

    Get PDF

    Trapping mammalian protein complexes in viral particles

    Get PDF
    Cell lysis is an inevitable step in classical mass spectrometry-based strategies to analyse protein complexes. Complementary lysis conditions, in situ cross-linking strategies and proximal labelling techniques are currently used to reduce lysis effects on the protein complex. We have developed Virotrap, a viral particle sorting approach that obviates the need for cell homogenization and preserves the protein complexes during purification. By fusing a bait protein to the HIV-1 GAG protein, we show that interaction partners become trapped within virus-like particles (VLPs) that bud from mammalian cells. Using an efficient VLP enrichment protocol, Virotrap allows the detection of known binary interactions and MS-based identification of novel protein partners as well. In addition, we show the identification of stimulus-dependent interactions and demonstrate trapping of protein partners for small molecules. Virotrap constitutes an elegant complementary approach to the arsenal of methods to study protein complexes

    HIV-1 Vpr N-terminal tagging affects alternative splicing of the viral genome

    Get PDF
    To facilitate studies on Vpr function in replicating HIV-1, we aimed to tag the protein in an infectious virus. First we showed that N-, but not C-terminal HA/FLAG tagging of Vpr protein preserves Vpr cytopathicity. Cloning the tags into proviral DNA however ablated viral production and replication. By construction of additional viral variants we could show this defect was not protein-but RNA-dependent and sequence specific, and characterized by oversplicing of the genomic RNA. Simulation of genomic RNA folding suggested that introduction of the tag sequence induced an alternative folding structure in a region enriched in splice sites and splicing regulatory sequences. In silico predictions identified the HA/His(6)-Vpr tagging in HIV-1 to affect mRNA folding less than HA/FLAG-Vpr tagging. In vitro infectivity and mRNA splice pattern improved but did not reach wild-type values. Thus, sequence-specific insertions may interfere with mRNA splicing, possibly due to altered RNA folding. Our results point to the complexity of viral RNA genome sequence interactions. This should be taken into consideration when designing viral manipulation strategies, for both research as for biological interventions

    IRE1β negatively regulates IRE1α signaling in response to endoplasmic reticulum stress

    Get PDF
    IRE1β is an ER stress sensor uniquely expressed in epithelial cells lining mucosal surfaces. Here, we show that intestinal epithelial cells expressing IRE1β have an attenuated unfolded protein response to ER stress. When modeled in HEK293 cells and with purified protein, IRE1β diminishes expression and inhibits signaling by the closely related stress sensor IRE1α. IRE1β can assemble with and inhibit IRE1α to suppress stress-induced XBP1 splicing, a key mediator of the unfolded protein response. In comparison to IRE1α, IRE1β has relatively weak XBP1 splicing activity, largely explained by a nonconserved amino acid in the kinase domain active site that impairs its phosphorylation and restricts oligomerization. This enables IRE1β to act as a dominant-negative suppressor of IRE1α and affect how barrier epithelial cells manage the response to stress at the host–environment interface

    A Review of the Deep Sea Treasure problem as a Multi-Objective Reinforcement Learning Benchmark

    Full text link
    In this paper, the authors investigate the Deep Sea Treasure (DST) problem as proposed by Vamplew et al. Through a number of proofs, the authors show the original DST problem to be quite basic, and not always representative of practical Multi-Objective Optimization problems. In an attempt to bring theory closer to practice, the authors propose an alternative, improved version of the DST problem, and prove that some of the properties that simplify the original DST problem no longer hold. The authors also provide a reference implementation and perform a comparison between their implementation, and other existing open-source implementations of the problem. Finally, the authors also provide a complete Pareto-front for their new DST problem.Comment: 10 pages, 4 figures; Fixed Supplementary Materials PD

    Endogenous TOM20 Proximity Labeling:A Swiss-Knife for the Study of Mitochondrial Proteins in Human Cells

    Get PDF
    Biotin-based proximity labeling approaches, such as BioID, have demonstrated their use for the study of mitochondria proteomes in living cells. The use of genetically engineered BioID cell lines enables the detailed characterization of poorly characterized processes such as mitochondrial co-translational import. In this process, translation is coupled to the translocation of the mitochondrial proteins, alleviating the energy cost typically associated with the post-translational import relying on chaperone systems. However, the mechanisms are still unclear with only few actors identified but none that have been described in mammals yet. We thus profiled the TOM20 proxisome using BioID, assuming that some of the identified proteins could be molecular actors of the co-translational import in human cells. The obtained results showed a high enrichment of RNA binding proteins close to the TOM complex. However, for the few selected candidates, we could not demonstrate a role in the mitochondrial co-translational import process. Nonetheless, we were able to demonstrate additional uses of our BioID cell line. Indeed, the experimental approach used in this study is thus proposed for the identification of mitochondrial co-translational import effectors and for the monitoring of protein entry inside mitochondria with a potential application in the prediction of mitochondrial protein half-life
    corecore