199 research outputs found

    The Liana assemblage of a Congolian rainforest : diversity, structure and dynamics

    Get PDF
    Key words: Liana assemblage, species composition, community, dynamics, canopy openness, Manniophyton fulvum, functional traits, population density, pervasive change. This study analyzes the diversity, composition, and dynamics of the liana assemblage of the Ituri rain forest in northeastern DR Congo. I used data from two 10-ha plots of the Ituri Forest Dynamics Plots, in which all liana stems ≥2 cm diameter at breast height (dbh) were marked, mapped, measured and identified in 1994, 2001 and 2007. In addition, the plot topography and canopy structure were measured. Chapter 2 analyzes the liana assemblage (in terms of species richness, abundance and diversity), characterizes liana functional traits and determines effects of forest structure, topography and edaphic variation on liana species composition. In 20 ha, 15008 liana individuals were found, representing 195 species, 83 genera and 34 plant families. Per hectare species number averaged 64, basal area was 0.71 m2 and Fisher alpha, Shannon and Simpson diversity indices were 17.9, 3.1 and 11.4, respectively. There was oligarchic dominance of 10 plant families that represented 69% of total species richness, 92% of liana abundance and 92% of basal area, while ten dominant species accounted for 63% of abundance and 59% of basal area. Forty-one species (21%) were represented by one individual only. Most lianas were light-demanding, climbed their hosts by twining, and had conspicuous flowers, medium-sized leaves and animal-dispersed propagules. Liana abundance increased with abundance of medium-sized and large trees but was, surprisingly, independent of small-tree abundance. Canopy openness, soil moisture, and tree size were the most important environmental factors influencing abundance and distribution of lianas. In Chapter 3 I investigate changes in structural characteristics, diversity, recruitment, mortality and growth of the liana community over the thirteen years (1994 ¬- 2007). Liana density decreased from 750 (1994) through 547 (2001) to 499 (2007) stems ha-1, with concomitant declines in basal area and above-ground biomass. Despite lower stem densities the species richness remained constant over time. Total liana recruitment rates decreased slightly from 8.6% per year in the first period to 6.6% in the second, but this decrease was not significant. Liana mortality rates decreased significantly from 7.2% to 4.4% per year over the two census intervals. Diameter growth rates and survival increased with liana stem diameter. Surprisingly, liana abundance in Ituri showed recent declines, rather than recent increases, as has been reported for tropical and temperate forests in the Americas. Interestingly, changes in overall liana community structure and composition were mostly driven by one species only: the dramatic collapse of superabundant Manniophyton fulvum between the first and the second census. In chapter 4 I investigated species-specific dynamics of the 79 most abundant liana species, representing 13,156 of the stems (97% of total) in two 10-ha plots. I evaluated their demographic performance and the relation if the vital rates (growth, mortality, recruitment) to the species abundance and four functional traits (climbing strategy, dispersal syndrome, leaf size and light requirements) to determine across species variations and major strategies characterizing species. Vital rates shared a wide interspecific variation; species-specific recruitment rates varied from 0.0-10.9%, mortality rates from 0.43-7.89% over 13-year, and growth rates from -0.03-3.51 mm y-1. Most species had low to moderate rates. Species that grew fast tended also to recruit and die fast, but recruitment and mortality rates were not directly related, suggesting that species shift in absolute abundance over the 13 year period. However, with the exception of the collapsing Manniophyton fulvum population, species maintained their rank-dominance over time. Species growth declined with abundance, but recruitment and mortality rates were not related to abundance. The demographic performance of liana species varied weakly with their climbing strategy and dispersal mode but was, surprisingly, not related to their lifetime light requirements. A principle components analysis of liana strategies in terms of functional traits and vital rates showed that light demand, and dispersal syndrome were the most determining traits. Based on the PCA three functional guilds were distinguished. I conclude that old-growth forest liana species show a large variation in abundance and vital rates, and that density-dependent mechanisms are insufficient to explain the species abundance patterns over time. Lianas are thought to globally increase in density, but we have limited knowledge about the taxonomic patterns of change in liana abundance, and the underlying vital rates that explain changes in liana density. In chapter 5 the changes in abundance of 79 relatively abundant liana species are evaluated. The Ituri forest showed a pervasive change in liana population density in the last decade. 37 species changed significantly in their abundance over time: 12 (15% of total) species increased, and 25 (32%) species decreased. 42 (53%) species did not change. Of the 48 genera, 40% decreased and 52% stayed the same. Five of the 12 increasing species belonged to the Celastraceae, which also was the only significantly increasing family. Surprisingly, none of the four functional traits (lifetime light requirements, climbing mechanism, dispersal mechanism, and leaf size) was significantly associated with species change in population density. Many decreasing species, however, are associated with disturbed habitats and are short-lived. Many increasing species are late successional and longer-lived. Increasing species have a slightly higher recruitment, decreasing species a higher mortality. This study suggests that changes in the liana community result from forest recovery from past disturbances. Rising atmospheric CO2 level was not a likely explanation for liana change: more species declined than increased, and increasing species did not have higher growth rates. In the Ituri Forest local stand dynamics override more global drivers of liana change. <br/

    Une forte saisonnalité du climat et de la phénologie reproductive dans la forêt du Mayombe : l’apport des données historiques de la Réserve de Luki en République démocratique du Congo

    Get PDF
    In Africa, the reproductive phenology of tropical trees is mostly annual and regular. This study documents the intra- and inter-annual reproductive phenology of trees in the Mayombe forest, from historical data on the Luki Reserve in the Democratic Republic of the Congo. Reproductive diameter, which is a key parameter for forest management but is largely unknown for many timber species, was also documented for the most abundant species in the dataset. Phenological monitoring of 3,642 trees belonging to 158 species and 39 families was conducted in the Luki Reserve every 10 days from 1948 to 1957. Circular statistics were used to test the synchronicity of phenological events among trees, both at the community level, i.e. for the forest as a whole, and individually for 87 species, which included 35 well-represented species (n >= 20 trees), 16 commercial species and 36 other species. Logistic regressions were used to determine the diameter (minimum and regular) of these species on fruiting. Reproductive phenology for the majority of the trees and the species is largely seasonal, annual and regular (81.6%, 71 species). The peaks for flowering are more abrupt than the fruiting peaks and more spread out over time, although the timing of flowering and fruiting is significantly aggregated. Most of the trees and species bloom from December to February, during the short dry season, but flowers and fruits can be observed throughout the year within the community. Only 13 species showed a significant relationship between diameter and reproduction, including seven canopy species, five understory species and one light-demanding species. For these 13 species, the average minimum reproduction diameter was 17.3 cm

    A Standard Protocol for Liana Censuses

    Get PDF
    A recent increase in published studies of lianas has been paralleled by a proliferation of protocols for censusing lianas. This article seeks to increase uniformity in liana inventories by providing specific recommendations for the determination of which taxa to include, the location of diameter measurement points on individual stems, the setting of minimum stem diameter cutoffs, the treatment of multiple‐stemmed and rooted clonal groups, and the measurement of noncylindrical stems. Use of more uniform liana censusing protocols may facilitate comparison of independently collected data sets and further our understanding of global patterns in liana abundance, diversity, biomass, and dynamics

    A Standard Protocol for Liana Censuses 1

    Full text link
    A recent increase in published studies of lianas has been paralleled by a proliferation of protocols for censusing lianas. This article seeks to increase uniformity in liana inventories by providing specific recommendations for the determination of which taxa to include, the location of diameter measurement points on individual stems, the setting of minimum stem diameter cutoffs, the treatment of multiple-stemmed and rooted clonal groups, and the measurement of noncylindrical stems. Use of more uniform liana censusing protocols may facilitate comparison of independently collected data sets and further our understanding of global patterns in liana abundance, diversity, biomass, and dynamics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75009/1/j.1744-7429.2006.00134.x.pd

    Mapping Water Levels across a Region of the Cuvette Centrale Peatland Complex

    Get PDF
    Inundation dynamics are the primary control on greenhouse gas emissions from peatlands. Situated in the central Congo Basin, the Cuvette Centrale is the largest tropical peatland complex. However, our knowledge of the spatial and temporal variations in its water levels is limited. By addressing this gap, we can quantify the relationship between the Cuvette Centrale’s water levels and greenhouse gas emissions, and further provide a baseline from which deviations caused by climate or land-use change can be observed, and their impacts understood. We present here a novel approach that combines satellite-derived rainfall, evapotranspiration and L-band Synthetic Aperture Radar (SAR) data to estimate spatial and temporal changes in water level across a sub-region of the Cuvette Centrale. Our key outputs are a map showing the spatial distribution of rainfed and flood-prone locations and a daily, 100 m resolution map of peatland water levels. This map is validated using satellite altimetry data and in situ water table data from water loggers. We determine that 50% of peatlands within our study area are largely rainfed, and a further 22.5% are somewhat rainfed, receiving hydrological input mostly from rainfall (directly and via surface/sub-surface inputs in sloped areas). The remaining 27.5% of peatlands are mainly situated in riverine floodplain areas to the east of the Congo River and between the Ubangui and Congo rivers. The mean amplitude of the water level across our study area and over a 20-month period is 22.8 ± 10.1 cm to 1 standard deviation. Maximum temporal variations in water levels occur in the riverine floodplain areas and in the inter-fluvial region between the Ubangui and Congo rivers. Our results show that spatial and temporal changes in water levels can be successfully mapped over tropical peatlands using the pattern of net water input (rainfall minus evapotranspiration, not accounting for run-off) and L-band SAR data

    Simulating carbon accumulation and loss in the central Congo peatlands

    Get PDF
    Peatlands of the central Congo Basin have accumulated carbon over millennia. They currently store some 29 billion tonnes of carbon in peat. However, our understanding of the controls on peat carbon accumulation and loss and the vulnerability of this stored carbon to climate change is in its infancy. Here we present a new model of tropical peatland development, DigiBog_Congo, that we use to simulate peat carbon accumulation and loss in a rain-fed interfluvial peatland that began forming ~20,000 calendar years Before Present (cal. yr BP, where ‘present’ is 1950 CE). Overall, the simulated age-depth curve is in good agreement with palaeoenvironmental reconstructions derived from a peat core at the same location as our model simulation. We find two key controls on long-term peat accumulation: water at the peat surface (surface wetness) and the very slow anoxic decay of recalcitrant material. Our main simulation shows that between the Late Glacial and early Holocene there were several multidecadal periods where net peat and carbon gain alternated with net loss. Later, a climatic dry phase beginning ~5200 cal. yr BP caused the peatland to become a long-term carbon source from ~3975 to 900 cal. yr BP. Peat as old as ~7000 cal. yr BP was decomposed before the peatland's surface became wetter again, suggesting that changes in rainfall alone were sufficient to cause a catastrophic loss of peat carbon lasting thousands of years. During this time, 6.4 m of the column of peat was lost, resulting in 57% of the simulated carbon stock being released. Our study provides an approach to understanding the future impact of climate change and potential land-use change on this vulnerable store of carbon

    Tropical peatlands and their conservation are important in the context of COVID-19 and potential future (zoonotic) disease pandemics.

    Get PDF
    The COVID-19 pandemic has caused global disruption, with the emergence of this and other pandemics having been linked to habitat encroachment and/or wildlife exploitation. High impacts of COVID-19 are apparent in some countries with large tropical peatland areas, some of which are relatively poorly resourced to tackle disease pandemics. Despite this, no previous investigation has considered tropical peatlands in the context of emerging infectious diseases (EIDs). Here, we review: (i) the potential for future EIDs arising from tropical peatlands; (ii) potential threats to tropical peatland conservation and local communities from COVID-19; and (iii) potential steps to help mitigate these risks. We find that high biodiversity in tropical peat-swamp forests, including presence of many potential vertebrate and invertebrate vectors, combined, in places, with high levels of habitat disruption and wildlife harvesting represent suitable conditions for potential zoonotic EID (re-)emergence. Although impossible to predict precisely, we identify numerous potential threats to tropical peatland conservation and local communities from the COVID-19 pandemic. This includes impacts on public health, with the potential for haze pollution from peatland fires to increase COVID-19 susceptibility a noted concern; and on local economies, livelihoods and food security, where impacts will likely be greater in remote communities with limited/no medical facilities that depend heavily on external trade. Research, training, education, conservation and restoration activities are also being affected, particularly those involving physical groupings and international travel, some of which may result in increased habitat encroachment, wildlife harvesting or fire, and may therefore precipitate longer-term negative impacts, including those relating to disease pandemics. We conclude that sustainable management of tropical peatlands and their wildlife is important for mitigating impacts of the COVID-19 pandemic, and reducing the potential for future zoonotic EID emergence and severity, thus strengthening arguments for their conservation and restoration. To support this, we list seven specific recommendations relating to sustainable management of tropical peatlands in the context of COVID-19/disease pandemics, plus mitigating the current impacts of COVID-19 and reducing potential future zoonotic EID risk in these localities. Our discussion and many of the issues raised should also be relevant for non-tropical peatland areas and in relation to other (pandemic-related) sudden socio-economic shocks that may occur in future
    corecore