66 research outputs found
Recommended from our members
Effect of varying material anisotropy on critical current anisotropy in vicinal YBa2Cu3O7-delta thin films
The high cuprate superconductors are noted for their anisotropic
layered structure, certain of these materials indeed tend toward the limit of a
Lawrence-Doniach superconductor. However, YBaCuO has a
smaller anisotropy than would be expected from its interlayer spacing. This is
due to the cuprate chains in the structure. To investigate the influence of the
chain oxygen on transport properties critical current versus applied field
angle measurements were performed on fully oxygenated and de-oxygenated
YBaCuO thin films and optimally oxygenated
YCaBaCuO thin films. The films were grown
on 10 mis-cut SrTiO substrates to enable the intrinsic vortex
channelling effect to be observed. The form of the vortex channelling minimum
observed in field angle dependent critical current studies on the films was
seen to depend on film oxygenation. The vortex channelling effect is dependent
on a angular dependent cross-over to a string-pancake flux line lattice. The
results obtained appear to be consistent with the prediction of Blatter et al.
[Rev. Mod. Phys., 66 (4): 1125 (1994)] that increased superconducting
anisotropy leads to the kinked string-pancake lattice existing over a smaller
angular range.EPSR
Recommended from our members
Critical current of YBa2Cu3O7-delta low-angle grain boundaries
Transport critical current measurements have been performed on 5degrees [001]-tilt thin film YBa2Cu3O7-delta single grain boundaries with the magnetic field rotated in the plane of the film, phi. The variation of the critical current has been determined as a function of the angle between the magnetic field and the grain boundary plane. In applied fields above 1 T the critical current j(c) is found to be strongly suppressed only when the magnetic field is within an angle phi(k) of the grain boundary. Outside this angular range the behavior of the artificial grain boundary is dominated by the critical current of the grains. We show that the phi dependence of j(c) in the suppressed region is well described by a flux cutting model.EPSR
Vortex deformation and breaking in superconductors: A microscopic description
Vortex breaking has been traditionally studied for nonuniform critical
current densities, although it may also appear due to nonuniform pinning force
distributions. In this article we study the case of a
high-pinning/low-pinning/high-pinning layered structure. We have developed an
elastic model for describing the deformation of a vortex in these systems in
the presence of a uniform transport current density for any arbitrary
orientation of the transport current and the magnetic field. If is above a
certain critical value, , the vortex breaks and a finite effective
resistance appears. Our model can be applied to some experimental
configurations where vortex breaking naturally exists. This is the case for
YBaCuO (YBCO) low angle grain boundaries and films on vicinal
substrates, where the breaking is experienced by Abrikosov-Josephson vortices
(AJV) and Josephson string vortices (SV), respectively. With our model, we have
experimentally extracted some intrinsic parameters of the AJV and SV, such as
the line tension and compared it to existing predictions based on
the vortex structure.Comment: 11 figures in 13 files; minor changes after printing proof
Recommended from our members
Flux line lattice structure and behavior in antiphase boundary free vicinal YBa2Cu3O7-delta thin films
Field angle dependent critical current, magneto-optical microscopy and high resolution electron microscopy studies have been performed on YBa2Cu3O7-delta thin films grown on miscut substrates. High resolution electron microscopy images show that the films studied exhibited clean epitaxial growth with a low density of antiphase boundaries and stacking faults. Any antiphase boundaries (APBs) formed near the film substrate interface rapidly healed rather than extending through the thickness of the film. Unlike vicinal films grown on annealed substrates, which contain a high density of antiphase boundaries, magneto-optical imaging showed no filamentary flux penetration in the films studied. The flux penetration is, however, asymmetric. This is associated with intrinsic pinning of flux strings by the tilted a-b planes and the dependence of the pinning force on the angle between the local field and the a-b planes. Field angle dependent critical current measurements exhibited the striking vortex channeling effect previously reported in vicinal films. By combining the results of three complementary characterization techniques it is shown that extended APB free films exhibit markedly different critical current behavior compared to APB rich films. This is attributed to the role of APB sites as strong pinning centers for Josephson string vortices between the a-b planes. (C) 2003 American Institute of Physics
Enhanced Control and Reproducibility of Non-Neutral Plasmas
International audienceThe simultaneous control of the density and particle number of non-neutral plasmas confined in Penning-Malmberg traps is demonstrated. Control is achieved by setting the plasma’s density by applying a rotating electric field while simultaneously fixing its axial potential via evaporative cooling. This novel method is particularly useful for stabilizing positron plasmas, as the procedures used to collect positrons from radioactive sources typically yield plasmas with variable densities and particle numbers; it also simplifies optimization studies that require plasma parameter scans. The reproducibility achieved by applying this technique to the positron and electron plasmas used by the ALPHA antihydrogen experiment at CERN, combined with other developments, contributed to a 10-fold increase in the antiatom trapping rate
Observation of the 1S-2S transition in trapped antihydrogen
The spectrum of the hydrogen atom has played a central part in fundamental physics over the past 200 years. Historical examples of its importance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman and others, the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S–2S transition by Hänsch1 to a precision of a few parts in 1015. Recent technological advances have allowed us to focus on antihydrogen—the antimatter equivalent of hydrogen2,3,4. The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today’s Universe is observed to consist almost entirely of ordinary matter. This motivates the study of antimatter, to see if there is a small asymmetry in the laws of physics that govern the two types of matter. In particular, the CPT (charge conjugation, parity reversal and time reversal) theorem, a cornerstone of the Standard Model, requires that hydrogen and antihydrogen have the same spectrum. Here we report the observation of the 1S–2S transition in magnetically trapped atoms of antihydrogen. We determine that the frequency of the transition, which is driven by two photons from a laser at 243 nanometres, is consistent with that expected for hydrogen in the same environment. This laser excitation of a quantum state of an atom of antimatter represents the most precise measurement performed on an anti-atom. Our result is consistent with CPT invariance at a relative precision of about 2 × 10−10
Antihydrogen accumulation for fundamental symmetry tests
Antihydrogen, a positron bound to an antiproton, is the simplest anti-atom. Its structure and properties are expected to mirror those of the hydrogen atom. Prospects for precision comparisons of the two, as tests of fundamental symmetries, are driving a vibrant programme of research. In this regard, a limiting factor in most experiments is the availability of large numbers of cold ground state antihydrogen atoms. Here, we describe how an improved synthesis process results in a maximum rate of 10.5 +/- 0.6 atoms trapped and detected per cycle, corresponding to more than an order of magnitude improvement over previous work. Additionally, we demonstrate how detailed control of electron, positron and antiproton plasmas enables repeated formation and trapping of antihydrogen atoms, with the simultaneous retention of atoms produced in previous cycles. We report a record of 54 detected annihilation events from a single release of the trapped anti-atoms accumulated from five consecutive cycles
- …
