54,165 research outputs found
Nonequilibrium statistical mechanics of shear flow: invariant quantities and current relations
In modeling nonequilibrium systems one usually starts with a definition of
the microscopic dynamics, e.g., in terms of transition rates, and then derives
the resulting macroscopic behavior. We address the inverse question for a class
of steady state systems, namely complex fluids under continuous shear flow: how
does an externally imposed shear current affect the microscopic dynamics of the
fluid? The answer can be formulated in the form of invariant quantities, exact
relations for the transition rates in the nonequilibrium steady state, as
discussed in a recent letter [A. Baule and R. M. L. Evans, Phys. Rev. Lett.
101, 240601 (2008)]. Here, we present a more pedagogical account of the
invariant quantities and the theory underlying them, known as the
nonequilibrium counterpart to detailed balance (NCDB). Furthermore, we
investigate the relationship between the transition rates and the shear current
in the steady state. We show that a fluctuation relation of the
Gallavotti-Cohen type holds for systems satisfying NCDB.Comment: 24 pages, 11 figure
Spontaneous Breaking of Translational Invariance in One-Dimensional Stationary States on a Ring
We consider a model in which positive and negative particles diffuse in an
asymmetric, CP-invariant way on a ring. The positive particles hop clockwise,
the negative counterclockwise and oppositely-charged adjacent particles may
swap positions. Monte-Carlo simulations and analytic calculations suggest that
the model has three phases; a "pure" phase in which one has three pinned blocks
of only positive, negative particles and vacancies, and in which translational
invariance is spontaneously broken, a "mixed" phase with a non-vanishing
current in which the three blocks are positive, negative and neutral, and a
disordered phase without blocks.Comment: 7 pages, LaTeX, needs epsf.st
Mode-Dependent nonequilibrium temperature in aging systems
We introduce an exactly solvable model for glassy dynamics with many
relaxational modes, each one characterized by a different relaxational
time-scale. Analytical solution of the aging dynamics at low temperatures shows
that a nonequilibrium or effective temperature can be associated to each
time-scale or mode. The spectrum of effective temperatures shows two regions
that are separated by an age dependent boundary threshold. Region I is
characterized by partially equilibrated modes that relax faster than the modes
at the threshold boundary. Thermal fluctuations and time-correlations for modes
in region I show that those modes are in mutual thermal equilibrium at a unique
age-dependent effective temperature . In contrast, modes with
relaxational timescales longer than that of modes at the threshold (region II)
show diffusive properties and do not share the common temperature .
The shift of the threshold toward lower energy modes as the system ages, and
the progressive shrinking of region II, determines how the full spectrum of
modes equilibrates. As is usually done in experiments, we have defined a
frequency-dependent effective temperature and we have found that all modes in
region I are mutually equilibrated at the temperature
independently of the probing frequency. The present model aims to explain
transport anomalies observed in supercooled liquids in terms of a collection of
structurally disordered and cooperative rearranging mesoscopic regions.Comment: 26 pages, 11 figure
A census of massive stars in NGC 346. Stellar parameters and rotational velocities
Spectroscopy for 247 stars towards the young cluster NGC 346 in the Small
Magellanic Cloud has been combined with that for 116 targets from the
VLT-FLAMES Survey of Massive Stars. Spectral classification yields a sample of
47 O-type and 287 B-type spectra, while radial-velocity variations and/or
spectral multiplicity have been used to identify 45 candidate single-lined
systems, 17 double-lined systems, and one triple-lined system. Atmospheric
parameters (T and log) and projected rotational velocities
(sin) have been estimated using TLUSTY model atmospheres; independent
estimates of sin were also obtained using a Fourier Transform method.
Luminosities have been inferred from stellar apparent magnitudes and used in
conjunction with the T and sin estimates to constrain stellar
masses and ages using the BONNSAI package. We find that targets towards the
inner region of NGC 346 have higher median masses and projected rotational
velocities, together with smaller median ages than the rest of the sample.
There appears to be a population of very young targets with ages of less than 2
Myr, which have presumably all formed within the cluster. The more massive
targets are found to have lower sin consistent with previous studies.
No significant evidence is found for differences with metallicity in the
stellar rotational velocities of early-type stars, although the targets in the
SMC may rotate faster than those in young Galactic clusters. The rotational
velocity distribution for single non-supergiant B-type stars is inferred and
implies that a significant number have low rotational velocity (10\%
with <40 km/s), together with a peak in the probability distribution at
300 km/s. Larger projected rotational velocity estimates have been
found for our Be-type sample and imply that most have rotational velocities
between 200-450 km/s.Comment: Accepted by A&
Stresses in lipid membranes
The stresses in a closed lipid membrane described by the Helfrich
hamiltonian, quadratic in the extrinsic curvature, are identified using
Noether's theorem. Three equations describe the conservation of the stress
tensor: the normal projection is identified as the shape equation describing
equilibrium configurations; the tangential projections are consistency
conditions on the stresses which capture the fluid character of such membranes.
The corresponding torque tensor is also identified. The use of the stress
tensor as a basis for perturbation theory is discussed. The conservation laws
are cast in terms of the forces and torques on closed curves. As an
application, the first integral of the shape equation for axially symmetric
configurations is derived by examining the forces which are balanced along
circles of constant latitude.Comment: 16 pages, introduction rewritten, other minor changes, new references
added, version to appear in Journal of Physics
Probing molecular free energy landscapes by periodic loading
Single molecule pulling experiments provide information about interactions in
biomolecules that cannot be obtained by any other method. However, the
reconstruction of the molecule's free energy profile from the experimental data
is still a challenge, in particular for the unstable barrier regions. We
propose a new method for obtaining the full profile by introducing a periodic
ramp and using Jarzynski's identity for obtaining equilibrium quantities from
non-equilibrium data. Our simulated experiments show that this method delivers
significant more accurate data than previous methods, under the constraint of
equal experimental effort.Comment: 4 pages, 3 figure
The Arches cluster revisited: II. A massive eclipsing spectroscopic binary in the Arches cluster
We have carried out a spectroscopic variability survey of some of the most massive stars in the Arches cluster, using K-band observations obtained with SINFONI on the VLT. One target, F2, exhibits substantial changes in radial velocity; in combination with new KMOS and archival SINFONI spectra, its primary component is found to undergo radial velocity variation with a period of 10.483+/-0.002 d and an amplitude of ~350 km/s-1. A secondary radial velocity curve is also marginally detectable. We reanalyse archival NAOS-CONICA photometric survey data in combination with our radial velocity results to confirm this object as an eclipsing SB2 system, and the first binary identified in the Arches. We model it as consisting of an 82+/-12 M⊙ WN8-9h primary and a 60+/-8 M⊙ O5-6 Ia+ secondary, and as having a slightly eccentric orbit, implying an evolutionary stage prior to strong binary interaction. As one of four X-ray bright Arches sources previously proposed as colliding-wind massive binaries, it may be only the first of several binaries to be discovered in this cluster, presenting potential challenges to recent models for the Arches' age and composition. It also appears to be one of the most massive binaries detected to date; the primary's calculated initial mass of >~120 M⊙ would arguably make this the most massive binary known in the Galaxy
Validation of the Jarzynski relation for a system with strong thermal coupling: an isothermal ideal gas model
We revisit the paradigm of an ideal gas under isothermal conditions. A moving piston performs work on an ideal gas in a container that is strongly coupled to a heat reservoir. The thermal coupling is modeled by stochastic scattering at the boundaries. In contrast to recent studies of an adiabatic ideal gas with a piston [R.C. Lua and A.Y. Grosberg, J. Phys. Chem. B 109, 6805 (2005); I. Bena et al., Europhys. Lett. 71, 879 (2005)], the container and piston stay in contact with the heat bath during the work process. Under this condition the heat reservoir as well as the system depend on the work parameter lambda and microscopic reversibility is broken for a moving piston. Our model is thus not included in the class of systems for which the nonequilibrium work theorem has been derived rigorously either by Hamiltonian [C. Jarzynski, J. Stat. Mech. (2004) P09005] or stochastic methods [G.E. Crooks, J. Stat. Phys. 90, 1481 (1998)]. Nevertheless the validity of the nonequilibrium work theorem is confirmed both numerically for a wide range of parameter values and analytically in the limit of a very fast moving piston, i.e., in the far nonequilibrium regime
- …