63 research outputs found

    Optimising storage conditions and processing of sheep urine for nitrogen cycle and gaseous emission measurements from urine patches

    Get PDF
    Abstract In grazing systems, urine patches deposited by livestock are hotspots of nutrient cycling and the most important source of nitrous oxide (N2O) emissions. Studies of the effects of urine deposition, including, for example, the determination of country-specific N2O emission factors, require natural urine for use in experiments and face challenges obtaining urine of the same composition, but of differing concentrations. Yet, few studies have explored the importance of storage conditions and processing of ruminant urine for use in subsequent gaseous emission experiments. We conducted three experiments with sheep urine to determine optimal storage conditions and whether partial freeze-drying could be used to concentrate the urine, while maintaining the constituent profile and the subsequent urine-derived gaseous emission response once applied to soil. We concluded that filtering of urine prior to storage, and storage at − 20 °C best maintains the nitrogen-containing constituent profile of sheep urine samples. In addition, based on the 14 urine chemical components determined in this study, partial lyophilisation of sheep urine to a concentrate represents a suitable approach to maintain the constituent profile at a higher overall concentration and does not alter sheep urine-derived soil gaseous emissions

    Meta-analysis of global livestock urine-derived nitrous oxide emissions from agricultural soils

    Get PDF
    Nitrous oxide (N2O) is an air pollutant of major environmental concern, with agriculture representing 60% of anthropogenic global N2O emissions. Much of the N2O emissions from livestock production systems result from transformation of N deposited to soil within animal excreta. There exists a substantial body of literature on urine patch N2O dynamics, we aimed to identify key controlling factors influencing N2O emissions and to aid understanding of knowledge gaps to improve GHG reporting and prioritise future research. We conducted an extensive literature review and random effect meta-analysis (using REML) of results to identify key relationships between multiple potential independent factors and global N2O emissions factors (EFs) from urine patches. Mean air temperature, soil pH and ruminant animal species (sheep or cow) were significant factors influencing the EFs reviewed. However, several factors that are known to influence N2O emissions, such as animal diet and urine composition, could not be considered due to the lack of reported data. The review highlighted a widespread tendency for inadequate metadata and uncertainty reporting in the published studies, as well as the limited geographical extent of investigations, which are more often conducted in temperate regions thus far. Therefore, here we give recommendations for factors that are likely to affect the EFs and should be included in all future studies, these include: soil pH and texture; experimental set-up; direct measurement of soil moisture and temperature during the study period; amount and composition of urine applied; animal type and diet; N2O emissions with a measure of uncertainty; data from a control with zero-N application and meteorological data

    Observed Effect of Magnetic Fields on the Propagation of Magnetoacoustic Waves in the Lower Solar Atmosphere

    Full text link
    We study Hinode/SOT-FG observations of intensity fluctuations in Ca II H-line and G-band image sequences and their relation to simultaneous and co-spatial magnetic field measurements. We explore the G-band and H-line intensity oscillation spectra both separately and comparatively via their relative phase differences, time delays and cross-coherences. In the non-magnetic situations, both sets of fluctuations show strong oscillatory power in the 3 - 7 mHz band centered at 4.5 mHz, but this is suppressed as magnetic field increases. A relative phase analysis gives a time delay of H-line after G-band of 20\pm1 s in non-magnetic situations implying a mean effective height difference of 140 km. The maximum coherence is at 4 - 7 mHz. Under strong magnetic influence the measured delay time shrinks to 11 s with the peak coherence near 4 mHz. A second coherence maximum appears between 7.5 - 10 mHz. Investigation of the locations of this doubled-frequency coherence locates it in diffuse rings outside photospheric magnetic structures. Some possible interpretations of these results are offered.Comment: 19 pages, 6 figure

    Quiet-Sun imaging asymmetries in NaI D1 compared with other strong Fraunhofer lines

    Full text link
    Imaging spectroscopy of the solar atmosphere using the NaI D1 line yields marked asymmetry between the blue and red line wings: sampling a quiet-Sun area in the blue wing displays reversed granulation, whereas sampling in the red wing displays normal granulation. The MgI b2 line of comparable strength does not show this asymmetry, nor does the stronger CaII 8542 line. We demonstrate the phenomenon with near-simultaneous spectral images in NaI D1, MgI b2, and CaII 8542 from the Swedish 1-m Solar Telescope. We then explain it with line-formation insights from classical 1D modeling and with a 3D magnetohydrodynamical simulation combined with NLTE spectral line synthesis that permits detailed comparison with the observations in a common format. The cause of the imaging asymmetry is the combination of correlations between intensity and Dopplershift modulation in granular overshoot and the sensitivity to these of the steep profile flanks of the NaI D1 line. The MgI b2 line has similar core formation but much wider wings due to larger opacity buildup and damping in the photosphere. Both lines obtain marked core asymmetry from photospheric shocks in or near strong magnetic concentrations, less from higher-up internetwork shocks that produce similar asymmetry in the spatially averaged CaII 8542 profile.Comment: Accepted by Astron & Astrophys. In each in-text citation the year links to the corresponding ADS abstract pag

    Potential of urban green spaces for supporting horticultural production: a national scale analysis

    Get PDF
    As urban areas and land-use constraints grow, there is increasing interest in utilizing urban spaces for food production. Several studies have uncovered significant potential for urban growing to supplement production of fruit and vegetables, focusing on one or two cities as case studies, whilst others have assessed the global scale potential. Here, we provide a national-scale analysis of the horticultural production potential of urban green spaces, which is a relevant scale for agri-food and urban development policy making using Great Britain (GB) as a case study. Urban green spaces available for horticultural production across GB are identified and potential yields quantified based on three production options. The distribution of urban green spaces within 26 urban towns and cities across GB are then examined to understand the productive potential compared to their total extent and populations. Urban green spaces in GB, at their upper limit, have the capacity to support production that is 8× greater than current domestic production of fruit and vegetables. This amounts to 38% of current domestic production and imports combined, or >400% if exotic fruits and vegetables less suited to GB growing conditions are excluded. Most urban green spaces nationally are found to fall within a small number of categories, with private residential gardens and amenity spaces making up the majority of space. By examining towns and cities across GB in further detail, we find that the area of green space does not vary greatly between urban conurbations of different sizes, and all are found to have substantial potential to meet the dietary needs of the local urban population. This study highlights that national policies can be suitably developed to support urban agriculture and that making use of urban green spaces for food production could help to enhance the resilience of the national-scale food system to shocks in import pathways, or disruptions to domestic production and distribution.Biotechnology and Biological Sciences Research Council (BBSRC): BB/S01425X/1, ESRC and NERC Scottish Governmen

    A guide to the South Plains of Texas

    Get PDF
    A compilation of essays and articles covering history, agriculture, educational institutions, and legends of the historic South Plains of Texas.[139] leaves ; 152 pdf pages.November 1935.Pictorial illustrations by Bess Hubbard.Mimeographed copy reproduced by the students of Lubbock High School with permission and assistance of the Texas Highway Dept.Plains of Texas / A.W. Evans -- The rock house on Blanco Canyon / R.B. Smith -- The story of the famous Old Yellow House Ranch / Lamb county news -- The T-Bar Ranch / R.B. Smith -- U-Lazy-S Ranch / E. Taylor -- The old Mackenzie Trail / W.L Chittenden -- Mackenzie's Indian campaigns on the Staked Plains / M.L. Cox -- Horse bones / R.G. Carter -- Old Man Singer's store / W.C. Holden -- Letter of long ago describes living conditions in days of first settles / M. Witt -- Shanties and dugouts / The Cattleman -- The legend of the sand hills / J. Mitchell -- Three notable landmarks in Lynn County / F.P. Hill -- Descriptions of South Plains cities and towns / V. Upton -- Elevation, population, and highway mileage maps / M.W. Hobbs -- Roadside divertissement / V. Upton

    Situational factors shape moral judgements in the trolley dilemma in Eastern, Southern and Western countries in a culturally diverse sample

    Get PDF

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure
    corecore