80 research outputs found
Discrimination of low-frequency tones employs temporal fine structure
An auditory neuron can preserve the temporal fine structure of a
low-frequency tone by phase-locking its response to the stimulus. Apart from
sound localization, however, little is known about the role of this temporal
information for signal processing in the brain. Through psychoacoustic studies
we provide direct evidence that humans employ temporal fine structure to
discriminate between frequencies. To this end we construct tones that are based
on a single frequency but in which, through the concatenation of wavelets, the
phase changes randomly every few cycles. We then test the frequency
discrimination of these phase-changing tones, of control tones without phase
changes, and of short tones that consist of a single wavelets. For carrier
frequencies below a few kilohertz we find that phase changes systematically
worsen frequency discrimination. No such effect appears for higher carrier
frequencies at which temporal information is not available in the central
auditory system.Comment: 12 pages, 3 figure
Waking-like Brain Function in Embryos
Background: Experience-dependent plastic changes in the brain underlying complex forms of learning are generally initiated
when organisms are awake, and this may limit the earliest developmental time at which learning about external events
can take place. It is not known whether waking-like brain function is present prenatally in higher vertebrate (bird or mammal)embryos, or whether embryos have brain circuitry that can selectively turn on a waking-like state in response to salient
external sensory stimulation.
Results: Combining submillimeter-resolution brain positron emission tomography (PET), structural X-ray computed tomography (CT) of the skeleton for fine-scale embryo aging,
and noninvasive behavioral recording of chicken embryos in the egg revealed unexpectedly wide variation in prenatal brain
activity, inversely related to behavioral activity, which developed into different sleep-like fetal brain states. Brief prenatal
exposure to a salient chicken vocalization (eliciting strong postnatal behavioral responses) increased higher-brain activity significantly more than a spectrally and temporally matching ‘‘nonvocal’’ noise analog. Patterns of correlated activity between the brainstem and higher-brain areas resembling awake, posthatching animals were seen exclusively in chicken-stimulated embryos.
Conclusions: Waking-like brain function is present in a latent but inducible state during the final 20% of embryonic life,
selectively modulated by context-dependent monitoring circuitry. These data also reveal the developmental emergence of sleep-like behavior and its linkage to metabolic brain states and highlight problems with assigning embryo brain states based on behavioral observations.Fundación BBVA, Cátedra de Biomedicina (Spain)National Science and Engineering Research Council of CanadaCanadian Fund for InnovationScuola Internazionale Superiore di Studi Avanzati (Trieste, Italia)En prens
Dyslexia Impairs Speech Recognition but Can Spare Phonological Competence
Dyslexia is associated with numerous deficits to speech processing. Accordingly, a large literature asserts that dyslexics manifest a phonological deficit. Few studies, however, have assessed the phonological grammar of dyslexics, and none has distinguished a phonological deficit from a phonetic impairment. Here, we show that these two sources can be dissociated. Three experiments demonstrate that a group of adult dyslexics studied here is impaired in phonetic discrimination (e.g., ba vs. pa), and their deficit compromises even the basic ability to identify acoustic stimuli as human speech. Remarkably, the ability of these individuals to generalize grammatical phonological rules is intact. Like typical readers, these Hebrew-speaking dyslexics identified ill-formed AAB stems (e.g., titug) as less wordlike than well-formed ABB controls (e.g., gitut), and both groups automatically extended this rule to nonspeech stimuli, irrespective of reading ability. The contrast between the phonetic and phonological capacities of these individuals demonstrates that the algebraic engine that generates phonological patterns is distinct from the phonetic interface that implements them. While dyslexia compromises the phonetic system, certain core aspects of the phonological grammar can be spared
Are the Products of Statistical Learning Abstract or Stimulus-Specific?
Learners can segment potential lexical units from syllable streams when statistically variable transitional probabilities between adjacent syllables are the only cues to word boundaries. Here we examine the nature of the representations that result from statistical learning by assessing learners’ ability to generalize across acoustically different stimuli. In three experiments, we compare two possibilities: that the products of statistical segmentation processes are abstract and generalizable representations, or, alternatively, that products of statistical learning are stimulus-bound and restricted to perceptually similar instances. In Experiment 1, learners segmented units from statistically predictable streams, and recognized these units when they were acoustically transformed by temporal reversals. In Experiment 2, learners were able to segment units from temporally reversed syllable streams, but were only able to generalize in conditions of mild acoustic transformation. In Experiment 3, learners were able to recognize statistically segmented units after a voice change but were unable to do so when the novel voice was mildly distorted. Together these results suggest that representations that result from statistical learning can be abstracted to some degree, but not in all listening conditions
Optimized CUBIC protocol for three-dimensional imaging of chicken embryos at single-cell resolution
The CUBIC tissue-clearing protocol has been optimized to produce translucent immunostained whole chicken embryos and embryo brains. When combined with multispectral light-sheet microscopy, the validated protocol presented here provides a rapid, inexpensive and reliable method for acquiring accurate histological images that preserve three-dimensional structural relationships with single-cell resolution in whole early-stage chicken embryos and in the whole brains of late-stage embryos.The study was supported by the Human Frontier Science Program (RGP0004/2013), the European Commission Seventh Framework Programme (FP7, EU CIG Grant), the Ministerio de Economı́a y Competitividad (FIS2013-41802-R) and Consejerı́a de Educación, Juventud y Deporte, Comunidad de Madrid (P2013/ICE 2958)
The Developmental Trajectory of Brain-Scalp Distance from Birth through Childhood: Implications for Functional Neuroimaging
Measurements of human brain function in children are of increasing interest in cognitive neuroscience. Many techniques for brain mapping used in children, including functional near-infrared spectroscopy (fNIRS), electroencephalography (EEG), magnetoencephalography (MEG) and transcranial magnetic stimulation (TMS), use probes placed on or near the scalp. The distance between the scalp and the brain is a key variable for these techniques because optical, electrical and magnetic signals are attenuated by distance. However, little is known about how scalp-brain distance differs between different cortical regions in children or how it changes with development. We investigated scalp-brain distance in 71 children, from newborn to age 12 years, using structural T1-weighted MRI scans of the whole head. Three-dimensional reconstructions were created from the scalp surface to allow for accurate calculation of brain-scalp distance. Nine brain landmarks in different cortical regions were manually selected in each subject based on the published fNIRS literature. Significant effects were found for age, cortical region and hemisphere. Brain-scalp distances were lowest in young children, and increased with age to up to double the newborn distance. There were also dramatic differences between brain regions, with up to 50% differences between landmarks. In frontal and temporal regions, scalp-brain distances were significantly greater in the right hemisphere than in the left hemisphere. The largest contributors to developmental changes in brain-scalp distance were increases in the corticospinal fluid (CSF) and inner table of the cranium. These results have important implications for functional imaging studies of children: age and brain-region related differences in fNIRS signals could be due to the confounding factor of brain-scalp distance and not true differences in brain activity
Individual Differences in Sound-in-Noise Perception Are Related to the Strength of Short-Latency Neural Responses to Noise
Important sounds can be easily missed or misidentified in the presence of extraneous noise. We describe an auditory illusion in which a continuous ongoing tone becomes inaudible during a brief, non-masking noise burst more than one octave away, which is unexpected given the frequency resolution of human hearing. Participants strongly susceptible to this illusory discontinuity did not perceive illusory auditory continuity (in which a sound subjectively continues during a burst of masking noise) when the noises were short, yet did so at longer noise durations. Participants who were not prone to illusory discontinuity showed robust early electroencephalographic responses at 40–66 ms after noise burst onset, whereas those prone to the illusion lacked these early responses. These data suggest that short-latency neural responses to auditory scene components reflect subsequent individual differences in the parsing of auditory scenes
Multi-level analysis of the gut-brain axis shows autism spectrum disorder-associated molecular and microbial profiles
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by heterogeneous cognitive, behavioral and communication impairments. Disruption of the gut-brain axis (GBA) has been implicated in ASD although with limited reproducibility across studies. In this study, we developed a Bayesian differential ranking algorithm to identify ASD-associated molecular and taxa profiles across 10 cross-sectional microbiome datasets and 15 other datasets, including dietary patterns, metabolomics, cytokine profiles and human brain gene expression profiles. We found a functional architecture along the GBA that correlates with heterogeneity of ASD phenotypes, and it is characterized by ASD-associated amino acid, carbohydrate and lipid profiles predominantly encoded by microbial species in the genera Prevotella, Bifidobacterium, Desulfovibrio and Bacteroides and correlates with brain gene expression changes, restrictive dietary patterns and pro-inflammatory cytokine profiles. The functional architecture revealed in age-matched and sex-matched cohorts is not present in sibling-matched cohorts. We also show a strong association between temporal changes in microbiome composition and ASD phenotypes. In summary, we propose a framework to leverage multi-omic datasets from well-defined cohorts and investigate how the GBA influences ASD
Ostriches Sleep like Platypuses
Mammals and birds engage in two distinct states of sleep, slow wave sleep (SWS) and rapid eye movement (REM) sleep. SWS is characterized by slow, high amplitude brain waves, while REM sleep is characterized by fast, low amplitude waves, known as activation, occurring with rapid eye movements and reduced muscle tone. However, monotremes (platypuses and echidnas), the most basal (or ‘ancient’) group of living mammals, show only a single sleep state that combines elements of SWS and REM sleep, suggesting that these states became temporally segregated in the common ancestor to marsupial and eutherian mammals. Whether sleep in basal birds resembles that of monotremes or other mammals and birds is unknown. Here, we provide the first description of brain activity during sleep in ostriches (Struthio camelus), a member of the most basal group of living birds. We found that the brain activity of sleeping ostriches is unique. Episodes of REM sleep were delineated by rapid eye movements, reduced muscle tone, and head movements, similar to those observed in other birds and mammals engaged in REM sleep; however, during REM sleep in ostriches, forebrain activity would flip between REM sleep-like activation and SWS-like slow waves, the latter reminiscent of sleep in the platypus. Moreover, the amount of REM sleep in ostriches is greater than in any other bird, just as in platypuses, which have more REM sleep than other mammals. These findings reveal a recurring sequence of steps in the evolution of sleep in which SWS and REM sleep arose from a single heterogeneous state that became temporally segregated into two distinct states. This common trajectory suggests that forebrain activation during REM sleep is an evolutionarily new feature, presumably involved in performing new sleep functions not found in more basal animals
Mammal-Like Organization of the Avian Midbrain Central Gray and a Reappraisal of the Intercollicular Nucleus
In mammals, rostrocaudal columns of the midbrain periaqueductal gray (PAG) regulate diverse behavioral and physiological functions, including sexual and fight-or-flight behavior, but homologous columns have not been identified in non-mammalian species. In contrast to mammals, in which the PAG lies ventral to the superior colliculus and surrounds the cerebral aqueduct, birds exhibit a hypertrophied tectum that is displaced laterally, and thus the midbrain central gray (CG) extends mediolaterally rather than dorsoventrally as in mammals. We therefore hypothesized that the avian CG is organized much like a folded open PAG. To address this hypothesis, we conducted immunohistochemical comparisons of the midbrains of mice and finches, as well as Fos studies of aggressive dominance, subordinance, non-social defense and sexual behavior in territorial and gregarious finch species. We obtained excellent support for our predictions based on the folded open model of the PAG and further showed that birds possess functional and anatomical zones that form longitudinal columns similar to those in mammals. However, distinguishing characteristics of the dorsal/dorsolateral PAG, such as a dense peptidergic innervation, a longitudinal column of neuronal nitric oxide synthase neurons, and aggression-induced Fos responses, do not lie within the classical avian CG, but in the laterally adjacent intercollicular nucleus (ICo), suggesting that much of the ICo is homologous to the dorsal PAG
- …