45 research outputs found

    Investigations to Evaluate Gastric Mucoadhesion of an Organic Product to Ameliorate Gastritis

    No full text
    Gastritis is an inflammatory disease leading to abdominal pain, nausea, and diarrhea. While therapy depends on etiology, adhesive agents protecting the gastric tissue represent a promising treatment option. Caricol®-Gastro is an organic product that significantly decreased gastritic abdominal pain in a recent clinical study. To investigate whether this beneficial effect can be attributed to the formation of a protective layer covering the gastric mucosa after oral application, several methods were used to determine adhesion. These include macro-rheological measurements and gastric mucin interactions, which were correlated to network formation, examined by Cryo-scanning electron microscopy technique, wettability via sessile drop method on human gastric adenocarcinoma cell layers, and ex vivo adhesion studies on gastric porcine tissue with the falling liquid film technique considering physiological conditions and Franz diffusion cells for quantification. The results showed that Caricol®-Gastro formed a stable viscoelastic network with shear thinning properties. It exhibited high wettability and spreadability and adhered to the excised gastric mucosa. We found that oat flour, as the main ingredient of Caricol®-Gastro, supports the gel network regarding viscoelasticity and, to a lesser extent, adhesion in a concentration dependent manner. Moreover, our data highlight that a variety of coordinated methods are required to investigate gastric adhesion

    Development of Porous Polyurethane Implants Manufactured via Hot-Melt Extrusion

    No full text
    Implantable drug delivery systems (IDDSs) offer good patient compliance and allow the controlled delivery of drugs over prolonged times. However, their application is limited due to the scarce material selection and the limited technological possibilities to achieve extended drug release. Porous structures are an alternative strategy that can overcome these shortcomings. The present work focuses on the development of porous IDDS based on hydrophilic (HPL) and hydrophobic (HPB) polyurethanes and chemical pore formers (PFs) manufactured by hot-melt extrusion. Different PF types and concentrations were investigated to gain a sound understanding in terms of extrudate density, porosity, compressive behavior, pore morphology and liquid uptake. Based on the rheological analyses, a stable extrusion process guaranteed porosities of up to 40% using NaHCO3 as PF. The average pore diameter was between 140 and 600 µm and was indirectly proportional to the concentration of PF. The liquid uptake of HPB was determined by the open pores, while for HPL both open and closed pores influenced the uptake. In summary, through the rational selection of the polymer type, the PF type and concentration, porous carrier systems can be produced continuously via extrusion, whose properties can be adapted to the respective application site

    Assessment of Carbon Nanotubes on Barrier Function, Ciliary Beating Frequency and Cytokine Release in In Vitro Models of the Respiratory Tract

    No full text
    The exposure to inhaled carbon nanotubes (CNT) may have adverse effects on workers upon chronic exposure. In order to assess the toxicity of inhaled nanoparticles in a physiologically relevant manner, an air–liquid interface culture of mono and cocultures of respiratory cells and assessment in reconstructed bronchial and alveolar tissues was used. The effect of CNT4003 reference particles applied in simulated lung fluid was studied in bronchial (Calu-3 cells, EpiAirway™ and MucilAir™ tissues) and alveolar (A549 +/−THP-1 and EpiAlveolar™ +/−THP-1) models. Cytotoxicity, transepithelial electrical resistance, interleukin 6 and 8 secretion, mucociliary clearance and ciliary beating frequency were used as readout parameters. With the exception of increased secretion of interleukin 6 in the EpiAlveolar™ tissues, no adverse effects of CNT4003 particles, applied at doses corresponding to the maximum estimated lifetime exposure of workers, in the bronchial and alveolar models were noted, suggesting no marked differences between the models. Since the doses for whole-life exposure were applied over a shorter time, it is not clear if the interleukin 6 increase in the EpiAlveolar™ tissues has physiological relevance

    Controlled-Release from High-Loaded Reservoir-Type Systems—A Case Study of Ethylene-Vinyl Acetate and Progesterone

    No full text
    Reservoir systems (drug-loaded core surrounded by drug-free membrane) provide long-term controlled drug release. This is especially beneficial for drug delivery to specific body regions including the vagina. In this study, we investigated the potential of reservoir systems to provide high drug release rates over several weeks. The considered model system was an intra-vaginal ring (IVR) delivering progesterone (P4) in the mg/day range using ethylene-vinyl acetate (EVA) as release rate-controlling polymers. To circumvent the high material needs associated with IVR manufacturing, we implemented a small-scale screening procedure that predicts the drug release from IVRs. Formulations were designed based on the solubility and diffusivity of P4 in EVAs with varying vinyl acetate content. High in-vitro P4 release was achieved by (i) high P4 solubility in the core polymer; (ii) high P4 partition coefficient between the membrane and the core; and/or (iii) low membrane thicknesses. It was challenging for systems designed to release comparatively high fractions of P4 at early times to retain a constant drug release over a long time. P4 crystal dissolution in the core could not counterbalance drug diffusion through the membrane and drug crystal dissolution was found to be the rate-limiting step. Overall, high P4 release rates can be achieved from EVA-based reservoir system

    Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity

    No full text
    Abstract Background Data from environmental exposure to nanoparticles (NPs) suggest that chronic exposure may increase the incidence of lung, cardiovascular and neurodegenerative diseases. Impairment of cell function by intracellular accumulation of NPs is also suspected. Many types of NPs have been detected in the endosomal-lysosomal system and, upon repeated exposure, alterations of the endosomal-lysosomal system may occur. To identify such effects we compared the effect of carboxyl polystyrene particles (CPS) of different sizes (20-500 nm) on lysosomes of the endothelial cell line EAhy926 after short (24h) and long (72h-96h) exposure times. Lysosomal localization of CPS, as well as lysosomal pH, lysosomal membrane integrity, morphology of the endosomal-lysosomal system and activities of the lysosomal enzymes,cathepsin B and sulfatases, upon exposure to CPS were recorded. Results CPS in sizes ≤100 nm showed high co-localization with lysosomes already after 4h, larger CPS after 24h. None of the particles at non-cytotoxic concentrations caused marked changes in lysosomal pH or destroyed lysosomal membrane integrity. At 24h of exposure, 20 nm CPS induced significant dilatation of the endosomal-lysosomal system and reduced activity of lysosomal sulfatases. After 72h, these alterations were less pronounced. Conclusions Despite accumulation in lysosomes CPS induced only small changes in lysosomes. Upon longer contact, these changes are even less pronounced. The presented panel of assays may serve to identify effects on lysosomes also for other NPs.</p

    Assessment of long-term effects of nanoparticles in a microcarrier cell culture system.

    Get PDF
    Nano-sized materials could find multiple applications in medical diagnosis and therapy. One main concern is that engineered nanoparticles, similar to combustion-derived nanoparticles, may cause adverse effects on human health by accumulation of entire particles or their degradation products. Chronic cytotoxicity must therefore be evaluated. In order to perform chronic cytotoxicity testing of plain polystyrene nanoparticles on the endothelial cell line EAhy 926, we established a microcarrier cell culture system for anchorage-dependent cells (BioLevitator(TM)). Cells were cultured for four weeks and exposed to doses, which were not cytotoxic upon 24 hours of exposure. For comparison, these particles were also studied in regularly sub-cultured cells, a method that has traditionally been used to assess chronic cellular effects. Culturing on basal membrane coated microcarriers produced very high cell densities. Fluorescent particles were mainly localized in the lysosomes of the exposed cells. After four weeks of exposure, the number of cells exposed to 20 nm polystyrene particles decreased by 60% as compared to untreated controls. When tested in sub-cultured cells, the same particles decreased cell numbers to 80% of the untreated controls. Dose-dependent decreases in cell numbers were also noted after exposure of microcarrier cultured cells to 50 nm short multi-walled carbon nanotubes. Our findings support that necrosis, but not apoptosis, contributed to cell death of the exposed cells in the microcarrier culture system. In conclusion, the established microcarrier model appears to be more sensitive for the identification of cellular effects upon prolonged and repeated exposure to nanoparticles than traditional sub-culturing

    Investigation of the Influence of Wound-Treatment-Relevant Buffer Systems on the Colloidal and Optical Properties of Gold Nanoparticles

    No full text
    Biocompatible gold nanoparticles (AuNPs) are used in wound healing due to their radical scavenging activity. They shorten wound healing time by, for example, improving re-epithelialization and promoting the formation of new connective tissue. Another approach that promotes wound healing through cell proliferation while inhibiting bacterial growth is an acidic microenvironment, which can be achieved with acid-forming buffers. Accordingly, a combination of these two approaches appears promising and is the focus of the present study. Here, 18 nm and 56 nm gold NP (Au) were prepared with Turkevich reduction synthesis using design-of-experiments methodology, and the influence of pH and ionic strength on their behaviour was investigated. The citrate buffer had a pronounced effect on the stability of AuNPs due to the more complex intermolecular interactions, which was also confirmed by the changes in optical properties. In contrast, AuNPs dispersed in lactate and phosphate buffer were stable at therapeutically relevant ionic strength, regardless of their size. Simulation of the local pH distribution near the particle surface also showed a steep pH gradient for particles smaller than 100 nm. This suggests that the healing potential is further enhanced by a more acidic environment at the particle surface, making this strategy a promising approach
    corecore