27 research outputs found
The acute myeloid leukemia associated AML1-ETO fusion protein alters the transcriptome and cellular progression in a single-oncogene expressing in vitro induced pluripotent stem cell based granulocyte differentiation model
Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect normal hematopoiesis. The analysis of human AMLs has mostly been performed using end-point materials, such as cell lines and patient derived AMLs that also carry additional contributing mutations. The molecular effects of a single oncogenic hit, such as expression of the AML associated oncoprotein AML1-ETO on hematopoietic development and transformation into a (pre-) leukemic state still needs further investigation. Here we describe the development and characterization of an induced pluripotent stem cell (iPSC) system that allows in vitro differentiation towards different mature myeloid cell types such as monocytes and granulocytes. During in vitro differentiation we expressed the AML1-ETO fusion protein and examined the effects of the oncoprotein on differentiation and the underlying alterations in the gene program at 8 different time points. Our analysis revealed that AML1-ETO as a single oncogenic hit in a non-mutated background blocks granulocytic differentiation, deregulates the gene program via altering the acetylome of the differentiating granulocytic cells, and induces t(8;21) AML associated leukemic characteristics. Together, these results reveal that inducible oncogene expression during in vitro differentiation of iPS cells provides a valuable platform for analysis of aberrant regulation in disease
The novel p53 target gene IRF2BP2 participates in cell survival during the p53 stress response
The tumor suppressor p53 contributes to the cellular fate after genotoxic insults, mainly through the regulation of target genes, thereby allowing e.g. repair mechanisms resulting in cell survival or inducing apoptosis. Unresolved so far is the issue, which exact mechanisms lead to one or the other cellular outcome. Here, we describe the interferon regulatory factor-2-binding protein-2 (IRF2BP2) as a new direct target gene of p53, influencing the p53-mediated cellular decision. We show that upregulation of IRF2BP2 after treatment with actinomycin D (Act.D) is dependent on functional p53 in different cell lines. This occurs in parallel with the down-regulation of the interacting partner of IRF2BP2, the interferon regulatory factor-2 (IRF2), which is known to positively influence cell growth. Analyzing the molecular functions of IRF2BP2, it appears to be able to impede on the p53-mediated transactivation of the p21- and the Bax-gene. We show here that overexpressed IRF2BP2 has an impact on the cellular stress response after Act.D treatment and that it diminishes the induction of apoptosis after doxorubicin treatment. Furthermore, the knockdown of IRF2BP2 leads to an upregulation of p21 and faster induction of apoptosis after doxorubicin as well as Act.D treatment
RAD21 Cooperates with Pluripotency Transcription Factors in the Maintenance of Embryonic Stem Cell Identity
For self-renewal, embryonic stem cells (ESCs) require the expression of specific transcription factors accompanied by a particular chromosome organization to maintain a balance between pluripotency and the capacity for rapid differentiation. However, how transcriptional regulation is linked to chromosome organization in ESCs is not well understood. Here we show that the cohesin component RAD21 exhibits a functional role in maintaining ESC identity through association with the pluripotency transcriptional network. ChIP-seq analyses of RAD21 reveal an ESC specific cohesin binding pattern that is characterized by CTCF independent co-localization of cohesin with pluripotency related transcription factors Oct4, Nanog, Sox2, Esrrb and Klf4. Upon ESC differentiation, most of these binding sites disappear and instead new CTCF independent RAD21 binding sites emerge, which are enriched for binding sites of transcription factors implicated in early differentiation. Furthermore, knock-down of RAD21 causes expression changes that are similar to expression changes after Nanog depletion, demonstrating the functional relevance of the RAD21 - pluripotency transcriptional network association. Finally, we show that Nanog physically interacts with the cohesin or cohesin interacting proteins STAG1 and WAPL further substantiating this association. Based on these findings we propose that a dynamic placement of cohesin by pluripotency transcription factors contributes to a chromosome organization supporting the ESC expression program
H2A.Z Demarcates Intergenic Regions of the Plasmodium falciparum Epigenome That Are Dynamically Marked by H3K9ac and H3K4me3
Epigenetic regulatory mechanisms and their enzymes are promising targets for malaria therapeutic intervention; however, the epigenetic component of gene expression in P. falciparum is poorly understood. Dynamic or stable association of epigenetic marks with genomic features provides important clues about their function and helps to understand how histone variants/modifications are used for indexing the Plasmodium epigenome. We describe a novel, linear amplification method for next-generation sequencing (NGS) that allows unbiased analysis of the extremely AT-rich Plasmodium genome. We used this method for high resolution, genome-wide analysis of a histone H2A variant, H2A.Z and two histone H3 marks throughout parasite intraerythrocytic development. Unlike in other organisms, H2A.Z is a constant, ubiquitous feature of euchromatic intergenic regions throughout the intraerythrocytic cycle. The almost perfect colocalisation of H2A.Z with H3K9ac and H3K4me3 suggests that these marks are preferentially deposited on H2A.Z-containing nucleosomes. By performing RNA-seq on 8 time-points, we show that acetylation of H3K9 at promoter regions correlates very well with the transcriptional status whereas H3K4me3 appears to have stage-specific regulation, being low at early stages, peaking at trophozoite stage, but does not closely follow changes in gene expression. Our improved NGS library preparation procedure provides a foundation to exploit the malaria epigenome in detail. Furthermore, our findings place H2A.Z at the cradle of P. falciparum epigenetic regulation by stably defining intergenic regions and providing a platform for dynamic assembly of epigenetic and other transcription related complexes
The novel p53 target gene IRF2BP2 participates in
cell survival during the p53 stress respons
Data from: De novo transcriptome characterization and development of genomic tools for Scabiosa columbaria L. using next-generation sequencing techniques.
No description availabl
ChIP-Seq of ERα and RNA polymerase II defines genes differentially responding to ligands
We used ChIP-Seq to map ERα-binding sites and to profile changes in RNA polymerase II (RNAPII) occupancy in MCF-7 cells in response to estradiol (E2), tamoxifen or fulvestrant. We identify 10 205 high confidence ERα-binding sites in response to E2 of which 68% contain an estrogen response element (ERE) and only 7% contain a FOXA1 motif. Remarkably, 596 genes change significantly in RNAPII occupancy (59% up and 41% down) already after 1 h of E2 exposure. Although promoter proximal enrichment of RNAPII (PPEP) occurs frequently in MCF-7 cells (17%), it is only observed on a minority of E2-regulated genes (4%). Tamoxifen and fulvestrant partially reduce ERα DNA binding and prevent RNAPII loading on the promoter and coding body on E2-upregulated genes. Both ligands act differently on E2-downregulated genes: tamoxifen acts as an agonist thus downregulating these genes, whereas fulvestrant antagonizes E2-induced repression and often increases RNAPII occupancy. Furthermore, our data identify genes preferentially regulated by tamoxifen but not by E2 or fulvestrant. Thus (partial) antagonist loaded ERα acts mechanistically different on E2-activated and E2-repressed genes