702 research outputs found
Correction to: Circulating exosomes from patients with systemic lupus erythematosus induce an proinflammatory immune response
An amendment to this paper has been published and can be accessed via the original article
Differential Expression and Tumorigenic Function of Neurotensin Receptor 1 in Neuroendocrine Tumor Cells
Neurotensin (NTS), localized predominantly to the small bowel, stimulates the growth of a variety of cancers, including neuroendocrine tumors (NETs), mainly through its interaction with the high-affinity NTS receptor 1 (NTSR1). Here, we observed increased expression of NTSR1 in almost all tested clinical NET samples, but not in normal tissues. Through RT-PCR analysis, we found that the expression of NTSR1 and NTSR2 was either variable (NTSR1) or absent (NTSR2) in human NET cell lines. In contrast, NTSR3 and NTS were expressed in all NET cells. Treatment with 5-aza-2\u27-deoxycytidine, a demethylating agent, increased levels of NTSR1 and NTSR2 suggesting that DNA methylation contributes to NTSR1/2 expression patterns, which was confirmed by methylation analyses. In addition, we found that knockdown of NTSR1 decreased proliferation, expression levels of growth-related proteins, and anchorage-independent growth of BON human carcinoid cells. Moreover, stable silencing of NTSR1 suppressed BON cell growth, adhesion, migration and invasion. Our results show that high expression of NTSR1 is found in clinical NETs and that promoter methylation is an important mechanism controlling the differential expression of NTSR1 and silencing of NTSR2 in NET cells. Furthermore, knockdown of NTSR1 in BON cells suppressed oncogenic functions suggesting that NTSR1 contributes to NET tumorigenesis
Inhibition of nitric oxide production in lipopolysaccharide-activated RAW 264.7 macrophages by Jeju plant extracts
Nitric oxide (NO) produced in large amounts by inducible nitric oxide synthase (iNOS) is known to be responsible for the vasodilation and hypotension observed during septic shock and inflammation. Thus, inhibitors of iNOS may be useful candidates for the treatment of inflammatory diseases accompanied by the overproduction of NO. In this study, we prepared alcoholic extracts of Jeju plants and screened them for their inhibitory activity against NO production in lipopolysaccharide (LPS)-activated macrophages. Among the 260 kinds of plant extract tested, 122 extracts showed potent inhibitory activity towards NO production by more than 25% at a concentration of 100 µg/mL. Plants such as Malus sieboldii, Vaccinium oldhamii, Corylus hallaisanensis, Carpinus laxiflora, Styrax obassia, and Securinega suffruticosa showed the most potent inhibition (above 70%) at a concentration of 100 µg/mL. The cytotoxic effects of the plant extracts were determined by colorimetric MTT assays and most plant extracts exhibited only moderate cytotoxicity at 100 µg/mL. Therefore, these plants should be considered promising candidates for the further purification of bioactive compounds and would be useful for the treatment of inflammatory diseases accompanying overproduction of NO
The impacts of sex and the 5xFAD model of Alzheimer’s disease on the sleep and spatial learning responses to feeding time
IntroductionThe relationships between the feeding rhythm, sleep and cognition in Alzheimer’s disease (AD) are incompletely understood, but meal time could provide an easy-to-implement method of curtailing disease-associated disruptions in sleep and cognition. Furthermore, known sex differences in AD incidence could relate to sex differences in circadian rhythm/sleep/cognition interactions.MethodsThe 5xFAD transgenic mouse model of AD and non-transgenic wild-type controls were studied. Both female and male mice were used. Food access was restricted each day to either the 12-h light phase (light-fed groups) or the 12-h dark phase (dark-fed groups). Sleep (electroencephalographic/electromyographic) recording and cognitive behavior measures were collected.ResultsThe 5xFAD genotype reduces NREM and REM as well as the number of sleep spindles. In wild-type mice, light-fed groups had disrupted vigilance state amounts, characteristics, and rhythms relative to dark-fed groups. These feeding time differences were reduced in 5xFAD mice. Sex modulates these effects. 5xFAD mice display poorer spatial memory that, in female mice, is curtailed by dark phase feeding. Similarly, female 5xFAD mice have decreased anxiety-associated behavior. These emotional and cognitive measures are correlated with REM amount.DiscussionOur study demonstrates that the timing of feeding can alter many aspects of wake, NREM and REM. Unexpectedly, 5xFAD mice are less sensitive to these feeding time effects. 5xFAD mice demonstrate deficits in cognition which are correlated with REM, suggesting that this circadian-timed aspect of sleep may link feeding time and cognition. Sex plays an important role in regulating the impact of feeding time on sleep and cognition in both wild-type and 5xFAD mice, with females showing a greater cognitive response to feeding time than males
Myositis autoantibodies in Korean patients with inflammatory myositis: Anti-140-kDa polypeptide antibody is primarily associated with rapidly progressive interstitial lung disease independent of clinically amyopathic dermatomyositis
<p>Abstract</p> <p>Background</p> <p>To investigate the association between myositis autoantibodies and clinical subsets of inflammatory myositis in Korean patients.</p> <p>Methods</p> <p>Immunoprecipitation was performed using the sera of classic polymyositis (PM) (n = 11) and dermatomyositis (DM) (n = 38) patients who met the Bohan and Peter criteria for definite inflammatory myositis. A panel of defined myositis autoantibodies was surveyed to investigate the association between each autoantibody and clinical subsets of inflammatory myositis.</p> <p>Results</p> <p>Either MSAs, anti-p140, or anti-p155/140 antibodies were found in 63.3% (31/49) of the study subjects. Anti-140-kDa-polypeptide (anti-p140) (18.4%, 9/49) and anti-155/140-kDa polypeptide (anti-p155/140) (16.3%, 8/49) antibodies were the most common, followed by anti-Mi2 (14.3%, 7/49), anti-ARS (12.2%, 6/49) and anti-SRP (2.0%, 1/49) antibodies. All MSAs and anti-p140 and anti-p155/140 antibodies were mutually exclusive. Anti-p140 (23.7%, 9/38), anti-p155/140 (21.1%, 8/38), and anti-Mi2 (18.4%, 3/38) antibodies were found exclusively in DM patients. Anti-p140 antibody was associated with rapidly progressive interstitial lung disease (ILD) (p = 0.001), with a sensitivity of 100.0% (4/4) and a specificity of 85.3% (29/34) in DM patients. Anti-p155/140 antibody was associated with cancer-associated DM (p = 0.009), with a sensitivity of 55.6% (5/9) and a specificity of 89.7% (26/29). Cancer-associated survival was significantly worse when anti-p155/140 antibody was present (19.2 ± 7.6 vs. 65.0 ± 3.5 months, p = 0.032). Finally, anti-ARS antibodies were associated with stable or slowly progressive ILD in PM and DM patients (p = 0.005).</p> <p>Conclusions</p> <p>Anti-p140 and anti-p155/140 antibodies were commonly found autoantibodies in Korean patients with inflammatory myositis. Despite the lack of clinically amyopathic DM patients in the study subjects, a strong association was observed between anti-p140 antibody and rapidly progressive ILD. Anti-p155/140 antibody was associated with cancer-associated myositis and poor survival.</p
Therapeutic potential of CKD-506, a novel selective histone deacetylase 6 inhibitor, in a murine model of rheumatoid arthritis
Abstract
Objectives
Histone deacetylase (HDAC) 6 promotes inflammation. We investigated the anti-arthritic effects of CKD-506, a novel HDAC6 inhibitor, in vitro and in a murine model of arthritis as a novel treatment option for rheumatoid arthritis (RA).
Methods
HDAC6 was overexpressed in mouse peritoneal macrophages and RAW 264.7 cells, and the effects of a HDAC6 inhibitor CKD-506 on cytokine production and activity of NF-κB and AP-1 signaling were examined. Peripheral blood mononuclear cells (PBMCs) from RA patients and fibroblast-like synoviocytes (FLS) were activated in the presence of CKD-506. Next, regulatory T cells (Tregs) were induced from RA patients and co-cultured with healthy effector T cells (Teffs) and cell proliferation was analyzed by flow cytometry. Finally, the effects of the inhibitor on the severity of arthritis were assessed in a murine model of adjuvant-induced arthritis (AIA).
Results
Overexpression of HDAC6 induced macrophages to produce TNF-α and IL-6. The inhibitory effect of CKD-506 was mediated via blockade of NF-κB and AP-1 activation. HDAC6 inhibition reduced TNF-α and IL-6 production by activated RA PBMCs. CKD-506 inhibited production of MMP-1, MMP-3, IL-6, and IL-8 by activated FLS. In addition, CKD-506 inhibited proliferation of Teffs directly and indirectly by improving iTreg function. In AIA rats, oral CKD-506 improved clinical arthritis in a dose-dependent manner. A combination of sub-therapeutic CKD-506 and methotrexate exerted a synergistic effect.
Conclusion
The novel HDAC6 inhibitor CKD-506 suppresses inflammatoryresponses by monocytes/macrophages, improves Treg function, and ameliorates arthritis severity in a murine model of RA. Thus, CKD-506 might be a novel and effective treatment option for RA
Identification of the Allosteric Regulatory Site of Insulysin
Background: Insulin degrading enzyme (IDE) is responsible for the metabolism of insulin and plays a role in clearance of the Ab peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP.Principal Findings: the crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric kinetics and activation by a small peptide, as well as greatly reducing activation by ATP, demonstrating that this site plays a key role in allostery. Comparison of the peptide bound IDE structure (using a low activity E111F IDE mutant) with unliganded wild type IDE shows a change in the interface between two halves of the clamshell-like molecule, which may enhance enzyme activity by altering the equilibrium between closed and open conformations. in addition, changes in the dimer interface suggest a basis for communication between subunits.Conclusions/Significance: Our findings indicate that a region remote from the active site mediates allosteric activation of insulysin by peptides. Activation may involve a small conformational change that weakens the interface between two halves of the enzyme.United States Public Health ServicesUniv Kentucky, Dept Mol & Cellular Biochem, Lexington, KY 40536 USAUniv Kentucky, Struct Biol Ctr, Lexington, KY USAUniversidade Federal de São Paulo, Dept Biophys, Escola Paulista Med, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biophys, Escola Paulista Med, São Paulo, BrazilUnited States Public Health Services: NS38041United States Public Health Services: DA02243United States Public Health Services: DA016176United States Public Health Services: P20 RR20171United States Public Health Services: T32 DA016176Web of Scienc
Mea-surement of Gamma-Rays Induced Luminescence Generated in a Sapphire Based Fiber-Optic Radiation Sensor
Abstract In this study, we fabricated a sapphire based fiber-optic radiation sensor. To evaluate the fiberoptic radiation sensor, we measured the spectrum and intensity of the luminescence generated from the fiber-optic radiation sensor according to the thickness of the PMMA block by irradiation of gamma rays emitted from a Co-60 source. And the result was compared with the value calculated from the formula of Lambert-Beer
- …