1,635 research outputs found
A Comparison of two different jet algorithms for the top mass reconstruction at the LHC
We compare the abilities of the cluster-type jet algorithm, KtJet, and a
mid-point iterating cone algorithm to reconstruct the top mass at the LHC. We
discuss the information contained in the merging scales of cluster-type
algorithms, and how this can be used in experimental analyses, as well as the
different sources of systematic errors for the two algorithms. We find that the
sources of systematic error are different for the two algorithms, which may
help to better constrain the systematic error on the top mass at the LHC.Comment: 21 pages, 16 figures, accepted by JHE
Jets from Massive Unstable Particles: Top-Mass Determination
We construct jet observables for energetic top quarks that can be used to
determine a short distance top quark mass from reconstruction in e+ e-
collisions with accuracy better than Lambda_{QCD}. Using a sequence of
effective field theories we connect the production energy, mass, and top width
scales, Q>> m>> Gamma, for the top jet cross section, and derive a QCD
factorization theorem for the top invariant mass spectrum. Our analysis
accounts for: alpha_s corrections from the production and mass scales,
corrections due to constraints in defining invariant masses, non-perturbative
corrections from the cross-talk between the jets, and alpha_s corrections to
the Breit-Wigner line-shape. This paper mainly focuses on deriving the
factorization theorem for hemisphere invariant mass distributions and other
event shapes in e+e- collisions applicable at a future Linear Collider. We show
that the invariant mass distribution is not a simple Breit-Wigner involving the
top width. Even at leading order it is shifted and broadened by
non-perturbative soft QCD effects. We predict that the invariant mass peak
position increases linearly with Q/m due to these non-perturbative effects.
They are encoded in terms of a universal soft function that also describes soft
effects for massless dijet events. In a future paper we compute alpha_s
corrections to the jet invariant mass spectrum, including a summation of large
logarithms between the scales Q, m and Gamma.Comment: 54 pages, 10 figures, typos corrected, figures update
Technical design and performance of the NEMO3 detector
The development of the NEMO3 detector, which is now running in the Frejus
Underground Laboratory (L.S.M. Laboratoire Souterrain de Modane), was begun
more than ten years ago. The NEMO3 detector uses a tracking-calorimeter
technique in order to investigate double beta decay processes for several
isotopes. The technical description of the detector is followed by the
presentation of its performance.Comment: Preprint submitted to Nucl. Instrum. Methods A Corresponding author:
Corinne Augier ([email protected]
Possible background reductions in double beta decay experiments
The background induced by radioactive impurities of and
in the source of the double beta experiment NEMO-3 has been
investigated. New methods of data analysis which decrease the background from
the above mentioned contamination are identified. The techniques can also be
applied to other double beta decay experiments capable of measuring
independently the energies of the two electrons.Comment: 15 pages, 13 figures, accepted in the Nuclear Instruments and Methods
New Physics at the LHC. A Les Houches Report: Physics at TeV Colliders 2009 - New Physics Working Group
We present a collection of signatures for physics beyond the standard model
that need to be explored at the LHC. First, are presented various tools
developed to measure new particle masses in scenarios where all decays include
an unobservable particle. Second, various aspects of supersymmetric models are
discussed. Third, some signatures of models of strong electroweak symmetry are
discussed. In the fourth part, a special attention is devoted to high mass
resonances, as the ones appearing in models with warped extra dimensions.
Finally, prospects for models with a hidden sector/valley are presented. Our
report, which includes brief experimental and theoretical reviews as well as
original results, summarizes the activities of the "New Physics" working group
for the "Physics at TeV Colliders" workshop (Les Houches, France, 8-26 June,
2009).Comment: 189 page
Measurement of double beta decay of ¹⁰⁰Mo to excited states in the NEMO 3 experiment
The double beta decay of ¹⁰⁰Mo to the 0_{1}^{+} and 2_{1}^{+} excited states of ¹⁰⁰Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of ¹⁰⁰Mo to the excited 0_{1}^{+} state is measured to be T_{1/2}^{2v} = [5.7_{-0.9}^{+1.3} (stat.) ± 0.8 (syst.)] x 10²⁰ y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 0_{1}^{+} state has been found. The corresponding half-life limit is T_{1/2}^{0v} (0⁺→0_{1}^{+}) > 8.9 x 10²² y (at 90% C.L.). The search for the double beta decay to the 2_{1}^{+} excited state has allowed the determination of limits on the half-life for the two neutrino mode T_{1/2}^{0v} (0⁺→2_{1}^{+}) > 1.1 x 10²¹ y (at 90% C.L.) and for the neutrinoless mode T_{1/2}^{0v} (0⁺→2_{1}^{+}) > 1.6 x 10²³ y (at 90% C.L.)
Limits on different Majoron decay modes of Mo and Se for neutrinoless double beta decays in the NEMO-3 experiment
The NEMO-3 tracking detector is located in the Fr\'ejus Underground
Laboratory. It was designed to study double beta decay in a number of different
isotopes. Presented here are the experimental half-life limits on the double
beta decay process for the isotopes Mo and Se for different
Majoron emission modes and limits on the effective neutrino-Majoron coupling
constants. In particular, new limits on "ordinary" Majoron (spectral index 1)
decay of Mo ( y) and Se ( y) have been obtained. Corresponding bounds on the
Majoron-neutrino coupling constant are
and .Comment: 23 pages includind 4 figures, to be published in Nuclear Physics
Measurement of double beta decay of 100Mo to excited states in the NEMO 3 experiment
The double beta decay of 100Mo to the 0^+_1 and 2^+_1 excited states of 100Ru
is studied using the NEMO 3 data. After the analysis of 8024 h of data the
half-life for the two-neutrino double beta decay of 100Mo to the excited 0^+_1
state is measured to be T^(2nu)_1/2 = [5.7^{+1.3}_{-0.9}(stat)+/-0.8(syst)]x
10^20 y. The signal-to-background ratio is equal to 3. Information about energy
and angular distributions of emitted electrons is also obtained. No evidence
for neutrinoless double beta decay to the excited 0^+_1 state has been found.
The corresponding half-life limit is T^(0nu)_1/2(0^+ --> 0^+_1) > 8.9 x 10^22 y
(at 90% C.L.).
The search for the double beta decay to the 2^+_1 excited state has allowed
the determination of limits on the half-life for the two neutrino mode
T^(2nu)_1/2(0^+ --> 2^+_1) > 1.1 x 10^21 y (at 90% C.L.) and for the
neutrinoless mode T^(0nu)_1/2(0^+ --> 2^+_1) > 1.6 x 10^23 y (at 90% C.L.).Comment: 23 pages, 7 figures, 4 tables, submitted to Nucl. Phy
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS
The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
- …