15 research outputs found
Floquet operator engineering for quantum state stroboscopic stabilization
Optimal control is a valuable tool for quantum simulation, allowing for the
optimized preparation, manipulation, and measurement of quantum states. Through
the optimization of a time-dependent control parameter, target states can be
prepared to initialize or engineer specific quantum dynamics. In this work, we
focus on the tailoring of a unitary evolution leading to the stroboscopic
stabilization of quantum states of a Bose-Einstein condensate in an optical
lattice. We show how, for states with space and time symmetries, such an
evolution can be derived from the initial state-preparation controls; while for
a general target state we make use of quantum optimal control to directly
generate a stabilizing Floquet operator. Numerical optimizations highlight the
existence of a quantum speed limit for this stabilization process, and our
experimental results demonstrate the efficient stabilization of a broad range
of quantum states in the lattice.Comment: (10 pages, 3 figures
Optimal control strategies for parameter estimation of quantum systems
Optimal control theory is an effective tool to improve parameter estimation of quantum systems. Different methods can be employed for the design of the control protocol. They can be based either on Quantum Fischer Information (QFI) maximization or selective control processes. We describe the similarities, differences, and advantages of these two approaches. A detailed comparative study is presented for estimating the parameters of a spin system coupled to a bosonic bath. We show that the control mechanisms are generally equivalent, except when the decoherence is not negligible or when the experimental setup is not adapted to the QFI. In this latter case, the precision achieved with selective controls can be several orders of magnitude better than that given by the QFI
Characterization of a Driven Two-Level Quantum System by Supervised Learning
International audienceWe investigate the extent to which a two-level quantum systemsubjected to an external time-dependent drive can be characterizedby supervised learning. We apply this approach to the case ofbang-bang control and the estimation of the offset and the finaldistance to a given target state. For any control protocol, thegoal is to find the mapping between the offset and the distance.This mapping is interpolated using a neural network. The estimateis global in the sense that no a priori knowledge is required onthe relation to be determined. Different neural network algorithmsare tested on a series of data sets. We show that the mapping canbe reproduced with very high precision in the direct case when theoffset is known, while obstacles appear in the indirect casestarting from the distance to the target. We point out the limitsof the estimation procedure with respect to the properties of themapping to be interpolated. We discuss the physical relevance ofthe different results
Characterization of a Driven Two-Level Quantum System by Supervised Learning
International audienceWe investigate the extent to which a two-level quantum systemsubjected to an external time-dependent drive can be characterizedby supervised learning. We apply this approach to the case ofbang-bang control and the estimation of the offset and the finaldistance to a given target state. For any control protocol, thegoal is to find the mapping between the offset and the distance.This mapping is interpolated using a neural network. The estimateis global in the sense that no a priori knowledge is required onthe relation to be determined. Different neural network algorithmsare tested on a series of data sets. We show that the mapping canbe reproduced with very high precision in the direct case when theoffset is known, while obstacles appear in the indirect casestarting from the distance to the target. We point out the limitsof the estimation procedure with respect to the properties of themapping to be interpolated. We discuss the physical relevance ofthe different results
Optimal Floquet Engineering for Large Scale Atom Interferometers
The effective control of atomic coherence with cold atoms has made atom interferometry an essential tool for quantum sensors and precision measurements. The performance of these interferometers is closely related to the operation of large wave packet separations. We present here a novel approach for atomic beam splitters based on the stroboscopic stabilization of quantum states in an accelerated optical lattice. The corresponding Floquet state is generated by optimal control protocols. In this way, we demonstrate an unprecedented Large Momentum Transfer (LMT) interferometer, with a momentum separation of 600 photon recoils () between its two arms. Each LMT beam splitter is realized in a remarkably short time (2 ms) and is highly robust against the initial velocity dispersion of the wave packet and lattice depth fluctuations. Our study shows that Floquet engineering is a promising tool for exploring new frontiers in quantum physics at large scales, with applications in quantum sensing and testing fundamental physics
IngĂ©nierie dâopĂ©rateur de Floquet pour la stabilisation stroboscopique dâĂ©tat quantique
(13 pages, 3 figures)International audienceOptimal control is a valuable tool for quantum simulation, allowing for the optimized preparation, manipulation, and measurement of quantum states. Through the optimization of a time-dependent control parameter, target states can be prepared to initialize or engineer specific quantum dynamics. In this work, we focus on the tailoring of a unitary evolution leading to the stroboscopic stabilization of quantum states of a Bose-Einstein condensate in an optical lattice. We show how, for states with space and time symmetries, such an evolution can be derived from the initial state-preparation controls; while for a general target state we make use of quantum optimal control to directly generate a stabilizing Floquet operator. Numerical optimizations highlight the existence of a quantum speed limit for this stabilization process, and our experimental results demonstrate the efficient stabilization of a broad range of quantum states in the lattice.Le contrĂŽle optimal est un outil prĂ©cieux pour la simulation quantique, qui permet la prĂ©paration, la manipulation et la mesure optimisĂ©e dâĂ©tats quantiques. Par la variation optimale dâun paramĂštre de contrĂŽle dĂ©pendant du temps, des Ă©tats cibles peuvent ĂȘtre prĂ©parĂ©s pour initialiser ou façonner des dynamiques quantiques spĂ©cifiques. Dans ce travail, nous nous concentrons sur le façonnage dâune Ă©volution unitaire menant Ă la stabilisation stroboscopique dâĂ©tats quantiques dâun condensat de BoseâEinstein dans un rĂ©seau optique. Nous montrons comment une telle Ă©volution peut ĂȘtre dĂ©rivĂ©e de contrĂŽles prĂ©parant lâĂ©tat, pour des Ă©tats avec des symĂ©tries dâespace et de temps, puis nous nous consacrons Ă lâoptimisation directe dâun opĂ©rateur de Floquet stabilisant un Ă©tat cible. Les optimisations de contrĂŽle numĂ©riques mettent en Ă©vidence lâexistence dâune vitesse quantique limite pour ce processus de stabilisation, et nos rĂ©sultats expĂ©rimentaux montrent la stabilisation efficace dâune large gamme dâĂ©tats quantiques dans le rĂ©seau
Reprise de la discussion sur le projet de décret concernant l'ordre de travaux de l'Assemblée, lors de la séance du 1er janvier 1791
Lameth Alexandre Théodore Victor, chevalier de, Cottin Jacques Edme, Dionis du Séjour Achille-Pierre, Boussion Pierre, Populus Marc Etienne, Folleville Antoine-Charles, marquis de, André Antoine Balthazar d'. Reprise de la discussion sur le projet de décret concernant l'ordre de travaux de l'Assemblée, lors de la séance du 1er janvier 1791. In: Archives Parlementaires de 1787 à 1860 - PremiÚre série (1787-1799) Tome XXI - Du 26 novembre 1790 au 2 janvier 1791. Paris : Librairie Administrative P. Dupont, 1885. pp. 749-750
Reprise de la discussion sur le projet de décret concernant l'ordre de travaux de l'Assemblée, lors de la séance du 1er janvier 1791
Lameth Alexandre Théodore Victor, chevalier de, Cottin Jacques Edme, Dionis du Séjour Achille Pierre, Boussion Pierre, Populus Marc Etienne, Folleville Antoine Charles Gabriel, marquis de, André Antoine Balthazar d'. Reprise de la discussion sur le projet de décret concernant l'ordre de travaux de l'Assemblée, lors de la séance du 1er janvier 1791. In: Archives Parlementaires de 1787 à 1860 - PremiÚre série (1787-1799) Tome XXI - Du 26 novembre 1790 au 2 janvier 1791. Paris : Librairie Administrative P. Dupont, 1885. pp. 749-750