486 research outputs found
Local and non-local measures of acceleration in cosmology
Current cosmological observations, when interpreted within the framework of a
homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) model,
strongly suggest that the Universe is entering a period of accelerating
expansion. This is often taken to mean that the expansion of space itself is
accelerating. In a general spacetime, however, this is not necessarily true. We
attempt to clarify this point by considering a handful of local and non-local
measures of acceleration in a variety of inhomogeneous cosmological models.
Each of the chosen measures corresponds to a theoretical or observational
procedure that has previously been used to study acceleration in cosmology, and
all measures reduce to the same quantity in the limit of exact spatial
homogeneity and isotropy. In statistically homogeneous and isotropic
spacetimes, we find that the acceleration inferred from observations of the
distance-redshift relation is closely related to the acceleration of the
spatially averaged universe, but does not necessarily bear any resemblance to
the average of the local acceleration of spacetime itself. For inhomogeneous
spacetimes that do not display statistical homogeneity and isotropy, however,
we find little correlation between acceleration inferred from observations and
the acceleration of the averaged spacetime. This shows that observations made
in an inhomogeneous universe can imply acceleration without the existence of
dark energy.Comment: 19 pages, 10 figures. Several references added or amended, some minor
clarifications made in the tex
Rapid desensitization for non-immediate reactions in patients with cystic fibrosis
AbstractNon-immediate hypersensitivity reactions to antibiotics in patients with CF represent a real-life challenge for clinicians. Desensitization is often performed in patients who have exhausted all therapeutic options. Whilst desensitization is an established procedure for immediate reactions we assessed the outcomes and safety of desensitization for non-immediate reactions.We retrospectively reviewed 275 desensitization procedures in 42 patients with a range of non-immediate reactions to six commonly used antibiotics. Desensitization was performed using a 7-step rapid intravenous protocol on a normal medical ward.250 (91%) of overall desensitization procedures were successful; however, this figure incorporates certain individuals having multiple successful procedures. Individual patient success ranged from 55% with tazocin through to 88% with tobramycin. In the 25 patients who failed desensitization the reactions were mild and the majority occurred within 48h of starting treatment. Prophylactic anti-histamines and steroids did not reduce the risk of reaction.Whilst the mechanisms remain uncertain we can confirm that rapid desensitization is a safe and effective way of re-introducing an antibiotic to a patient with a non-immediate reaction
Supernovae data and perturbative deviation from homogeneity
We show that a spherically symmetric perturbation of a dust dominated
FRW universe in the Newtonian gauge can lead to an apparent
acceleration of standard candles and provide a fit to the magnitude-redshift
relation inferred from the supernovae data, while the perturbation in the
gravitational potential remains small at all scales. We also demonstrate that
the supernovae data does not necessarily imply the presence of some additional
non-perturbative contribution by showing that any Lemaitre-Tolman-Bondi model
fitting the supernovae data (with appropriate initial conditions) will be
equivalent to a perturbed FRW spacetime along the past light cone.Comment: 8 pages, 3 figures; v2: 1 figure added, references added/updated,
minor modifications and clarifications, matches published versio
The victorious English language: hegemonic practices in the management academy
This study explores hegemonic linguistic processes, that is, the dominant and unreflective use of the English language in the production of textual knowledge accounts. The authors see the production of management knowledge as situated in central or peripheral locations, which they examine from an English language perspective. Their inquiry is based on an empirical study based on the perspectives of 33 management academics (not English language speakers) in (semi) peripheral locations, who have to generate and disseminate knowledge in and through the English language. Although the hegemony of the center in the knowledge production process has long been acknowledged, the specific contribution of this study is to explore how the English language operates as part of the “ideological complex” that produces and maintains this hegemony, as well as how this hegemony is manifested at the local level of publication practices in peripherally located business and management schools
Finding a Spherically Symmetric Cosmology from Observations in Observational Coordinates -- Advantages and Challenges
One of the continuing challenges in cosmology has been to determine the
large-scale space-time metric from observations with a minimum of assumptions
-- without, for instance, assuming that the universe is almost
Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW). If we are lucky enough this
would be a way of demonstrating that our universe is FLRW, instead of
presupposing it or simply showing that the observations are consistent with
FLRW. Showing how to do this within the more general spherically symmetric,
inhomogeneous space-time framework takes us a long way towards fulfilling this
goal. In recent work researchers have shown how this can be done both in the
traditional Lema\^{i}tre-Tolman-Bondi (LTB) 3 + 1 coordinate framework, and in
the observational coordinate (OC) framework. In this paper we investigate the
stability of solutions, and the use of data in the OC field equations including
their time evolution and compare both approaches with respect to the
singularity problem at the maximum of the angular-diameter distance, the
stability of solutions, and the use of data in the field equations. This allows
a more detailed account and assessment of the OC integration procedure, and
enables a comparison of the relative advantages of the two equivalent solution
frameworks. Both formulations and integration procedures should, in principle,
lead to the same results. However, as we show in this paper, the OC procedure
manifests certain advantages, particularly in the avoidance of coordinate
singularities at the maximum of the angular-diameter distance, and in the
stability of the solutions obtained. This particular feature is what allows us
to do the best fitting of the data to smooth data functions and the possibility
of constructing analytic solutions to the field equations.Comment: 31 page
Strong Gravitational Lensing and Dark Energy Complementarity
In the search for the nature of dark energy most cosmological probes measure
simple functions of the expansion rate. While powerful, these all involve
roughly the same dependence on the dark energy equation of state parameters,
with anticorrelation between its present value w_0 and time variation w_a.
Quantities that have instead positive correlation and so a sensitivity
direction largely orthogonal to, e.g., distance probes offer the hope of
achieving tight constraints through complementarity. Such quantities are found
in strong gravitational lensing observations of image separations and time
delays. While degeneracy between cosmological parameters prevents full
complementarity, strong lensing measurements to 1% accuracy can improve
equation of state characterization by 15-50%. Next generation surveys should
provide data on roughly 10^5 lens systems, though systematic errors will remain
challenging.Comment: 7 pages, 5 figure
An inhomogeneous universe with thick shells and without cosmological constant
We build an exact inhomogeneous universe composed of a central flat Friedmann
zone up to a small redshift , a thick shell made of anisotropic matter, an
hyperbolic Friedmann metric up to the scale where dimming galaxies are observed
() that can be matched to a hyperbolic Lema\^{i}tre-Tolman-Bondi
spacetime to best fit the WMAP data at early epochs. We construct a general
framework which permits us to consider a non-uniform clock rate for the
universe. As a result, both for a uniform time and a uniform Hubble flow, the
deceleration parameter extrapolated by the central observer is always positive.
Nevertheless, by taking a non-uniform Hubble flow, it is possible to obtain a
negative central deceleration parameter, that, with certain parameter choices,
can be made the one observed currently. Finally, it is conjectured a possible
physical mechanism to justify a non-uniform time flow.Comment: Version published in Class. Quantum gra
Local Void vs Dark Energy: Confrontation with WMAP and Type Ia Supernovae
It is now a known fact that if we happen to be living in the middle of a
large underdense region, then we will observe an "apparent acceleration", even
when any form of dark energy is absent. In this paper, we present a "Minimal
Void" scenario, i.e. a "void" with minimal underdensity contrast (of about
-0.4) and radius (~ 200-250 Mpc/h) that can, not only explain the supernovae
data, but also be consistent with the 3-yr WMAP data. We also discuss
consistency of our model with various other measurements such as Big Bang
Nucleosynthesis, Baryon Acoustic Oscillations and local measurements of the
Hubble parameter, and also point out possible observable signatures.Comment: Minor numerical errors and typos corrected, references adde
Cosmology Without Averaging
We construct cosmological models consisting of large numbers of identical,
regularly spaced masses. These models do not rely on any averaging procedures,
or on the existence of a global Friedmann-Robertson-Walker (FRW) background.
They are solutions of Einstein's equations up to higher order corrections in a
perturbative expansion, and have large-scale dynamics that are well modelled by
the Friedmann equation. We find that the existence of arbitrarily large density
contrasts does not change either the magnitude or scale of the background
expansion, at least when masses are regularly arranged, and up to the
prescribed level of accuracy. We also find that while the local space-time
geometry inside each cell can be described as linearly perturbed FRW, one could
argue that a more natural description is that of perturbed Minkowski space (in
which case the scalar perturbations are simply Newtonian potentials). We expect
these models to be of use for understanding and testing ideas about averaging
in cosmology, as well as clarifying the relationship between global
cosmological dynamics and the static space-times associated with isolated
masses.Comment: 24 pages, 3 figures. Corrected and expande
Dynamic Structure Factor of Liquid and Amorphous Ge From Ab Initio Simulations
We calculate the dynamic structure factor S(k,omega) of liquid Ge (l-Ge) at
temperature T = 1250 K, and of amorphous Ge (a-Ge) at T = 300 K, using ab
initio molecular dynamics. The electronic energy is computed using
density-functional theory, primarily in the generalized gradient approximation,
together with a plane wave representation of the wave functions and ultra-soft
pseudopotentials. We use a 64-atom cell with periodic boundary conditions, and
calculate averages over runs of up to 16 ps. The calculated liquid S(k,omega)
agrees qualitatively with that obtained by Hosokawa et al, using inelastic
X-ray scattering. In a-Ge, we find that the calculated S(k,omega) is in
qualitative agreement with that obtained experimentally by Maley et al. Our
results suggest that the ab initio approach is sufficient to allow approximate
calculations of S(k,omega) in both liquid and amorphous materials.Comment: 31 pages and 8 figures. Accepted for Phys. Rev.
- …