4 research outputs found
The influence of long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system
BACKGROUND: Docosahexaenoic acid (DHA) and arachidonic acid (ARA) are major components of the cerebral cortex and visual system, where they play a critical role in neural development. We quantitatively mapped fatty acids in 26 regions of the four-week-old breastfed baboon CNS, and studied the influence of dietary DHA and ARA supplementation and prematurity on CNS DHA and ARA concentrations. METHODS: Baboons were randomized into a breastfed (B) and four formula-fed groups: term, no DHA/ARA (T-); term, DHA/ARA supplemented (T+); preterm, no DHA/ARA (P-); preterm and DHA/ARA supplemented (P+). At four weeks adjusted age, brains were dissected and total fatty acids analyzed by gas chromatography and mass spectrometry. RESULTS: DHA and ARA are rich in many more structures than previously reported. They are most concentrated in structures local to the brain stem and diencephalon, particularly the basal ganglia, limbic regions, thalamus and midbrain, and comparatively lower in white matter. Dietary supplementation increased DHA in all structures but had little influence on ARA concentrations. Supplementation restored DHA concentrations to levels of breastfed neonates in all regions except the cerebral cortex and cerebellum. Prematurity per se did not exert a strong influence on DHA or ARA concentrations. CONCLUSION: 1) DHA and ARA are found in high concentration throughout the primate CNS, particularly in gray matter such as basal ganglia; 2) DHA concentrations drop across most CNS structures in neonates consuming formulas with no DHA, but ARA levels are relatively immune to ARA in the diet; 3) supplementation of infant formula is effective at restoring DHA concentration in structures other than the cerebral cortex. These results will be useful as a guide to future investigations of CNS function in the absence of dietary DHA and ARA
Substantial variation across geographic regions in the obesity prevalence among 6–8 years old Hungarian children (COSI Hungary 2016)
Abstract Background There have been previous representative nutritional status surveys conducted in Hungary, but this is the first one that examines overweight and obesity prevalence according to the level of urbanization and in different geographic regions among 6–8-year-old children. We also assessed whether these variations were different by sex. Methods This survey was part of the fourth data collection round of World Health Organization (WHO) Childhood Obesity Surveillance Initiative which took place during the academic year 2016/2017. The representative sample was determined by two-stage cluster sampling. A total of 5332 children (48.4% boys; age 7.54 ± 0.64 years) were measured from all seven geographic regions including urban (at least 500 inhabitants per square kilometer; n = 1598), semi-urban (100 to 500 inhabitants per square kilometer; n = 1932) and rural (less than 100 inhabitants per square kilometer; n = 1802) areas. Results Using the WHO reference, prevalence of overweight and obesity within the whole sample were 14.2, and 12.7%, respectively. According to the International Obesity Task Force (IOTF) reference, rates were 12.6 and 8.6%. Northern Hungary and Southern Transdanubia were the regions with the highest obesity prevalence of 11.0 and 12.0%, while Central Hungary was the one with the lowest obesity rate (6.1%). The prevalence of overweight and obesity tended to be higher in rural areas (13.0 and 9.8%) than in urban areas (11.9 and 7.0%). Concerning differences in sex, girls had higher obesity risk in rural areas (OR = 2.0) but boys did not. Odds ratios were 2.0–3.4 in different regions for obesity compared to Central Hungary, but only among boys. Conclusions Overweight and obesity are emerging problems in Hungary. Remarkable differences were observed in the prevalence of obesity by geographic regions. These variations can only be partly explained by geographic characteristics. Trial registration Study protocol was approved by the Scientific and Research Ethics Committee of the Medical Research Council (61158–2/2016/EKU)
AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency.
A main function of white adipose tissue is to release fatty acids from stored triacylglycerol for other tissues to use as an energy source. Whereas endocrine regulation of lipolysis has been extensively studied, autocrine and paracrine regulation is not well understood. Here we describe the role of the newly identified major adipocyte phospholipase A(2), AdPLA (encoded by Pla2g16, also called HREV107), in the regulation of lipolysis and adiposity. AdPLA-null mice have a markedly higher rate of lipolysis owing to increased cyclic AMP levels arising from the marked reduction in the amount of adipose prostaglandin E(2) that binds the Galpha(i)-coupled receptor, EP3. AdPLA-null mice have markedly reduced adipose tissue mass and triglyceride content but normal adipogenesis. They also have higher energy expenditure with increased fatty acid oxidation within adipocytes. AdPLA-deficient ob/ob mice remain hyperphagic but lean, with increased energy expenditure, yet have ectopic triglyceride storage and insulin resistance. AdPLA is a major regulator of adipocyte lipolysis and is crucial for the development of obesity