88 research outputs found

    Load-bearing contribution of multi-walled carbon nanotubes on tensile response of aluminum

    Get PDF
    International audienceWe fabricated a uniformly dispersed and aligned multi-walled carbon nanotube reinforced aluminum matrix (Al–MWCNT) composite with minimal work hardening and without interfacial chemical compounds. In this paper, the direct load-bearing contribution of MWCNTs on the Al–MWCNT composite was investigated in detail for various volume fractions of MWCNTs. For up to 0.6 vol% of MWCNTs, the ultimate tensile strength (UTS) of the Al–MWCNT composite increased with the conservation of the remarkable failure elongation of Al. These UTS values are consistent with shear lag model. We also observed an uncommon multi-wall-type failure of MWCNTs during the hot extrusion process. However, owing to the agglomeration of MWCNTs in the Al matrix, the UTS deviated significantly from the shear lag model and the remarkable failure elongation of Al decreased. The possibility of strengthening, without degrading ductility, was demonstrated by exploiting directly the load-bearing ability of individually and uniformly dispersed aligned MWCNTs

    Effects of thickness stretching in functionally graded plates and shells

    No full text
    1The present work evaluates the effect of thickness stretching in plate/shell structures made by materials which are functionally graded (FGM) in the thickness directions. That is done by removing or retaining the transverse normal strain in the kinematics assumptions of various refined plate/shell theories. Variable plate/shell models are implemented according to Carrera's Unified Formulation. Plate/shell theories with constant transverse displacement are compared with the corresponding linear to fourth order of expansion in the thickness direction ones. Single-layered and multilayered FGM structures have been analyzed. A large numerical investigation, encompassing various plate/shell geometries as well as various grading rates for FGMs, has been conducted. It is mainly concluded that a refinements of classical theories that include additional in-plane variables could results meaningless unless transverse normal strain effects are taken into account

    Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication

    Get PDF
    Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices

    Heterocoagulation and SPS sintering of sulfonitric-treated CNT and 8YZ nanopowders

    Get PDF
    Reinforcement of ceramic composites using carbon nanotubes (CNT) has been extensively studied for materials such as Al2O3, Si3N4 and tetragonal ZrO2. Knowledge concerning CNT composites based on a matrix of cubic zirconia (8YZ) is in short supply, however. This paper presents a study on the addition of 1 wt% CNT to an 8YZ matrix. CNT was functionalized by sulfonitric treatment at three different temperatures: 50, 90 and 130°C. To obtain strong bond between the CNT and the 8YZ particles, the composites were produced by electrostatic heterocoagulation followed by consolidation by spark plasma sintering (SPS). Dense 8YZCNT composites were successfully processed by the proposed route. A study of the influence of the surface treatment temperature of CNT on the final properties of ceramics is also presented. CNTs are dispersed uniformly and individually within the 8YZ matrix in 8YZ-CNT 90 and 8YZ-CNT130 composites. 8YZ-CNT50 displayed a less uniform CNT distribution and the largest grain size, suggesting that the lowest temperature acid pretreatment is less effective for the subsequent heterocoagulation mixture. The reinforcement of ceramic materials by the addition of 1 wt% CNT was confirmed by an evaluation of fracture toughness.Centro de Tecnología de Recursos Minerales y Cerámic

    Microstructure and high-temperature strength of textured and non-textured ZrB2 ceramics

    No full text
    Zirconium diboride (ZrB2) ceramic possesses a unique combination of nice mechanical performance, high melting point (> 3000 °C) and great high-temperature oxidation resistance (up to 1600 °C), which makes it a promising material system for ever-increasing ultra-high temperature (UHT) applications. However, ZrB2 suffers from poor mechanical performance at UHTs, which could strongly limit its applications at UHT. Here, we successfully demonstrate that texturing is an effective strategy to greatly enhance the flexural strength of monolithic ZrB2, reaching a high value of 810 ± 60 MPa at 1600 °C when loaded in c-axis direction. We thoroughly discuss the strengthening mechanism by in-depth microstructural observations and analysis. Our discovery has technological and scientific implications for other UHT ceramic systems, especially those using ZrB2 as a matrix

    Mechanically reliable thermoelectric (TE) nanocomposites by dispersing and embedding TE-nanostructures inside a tetragonal ZrO2 matrix: the concept and experimental demonstration in graphene oxide–3YSZ system

    No full text
    Novel low-dimensional thermoelectric (TE) materials suffer from poor mechanical reliability, which limits their applications, especially in mechanically harsh environments. Here, we propose a new concept, in which the novel, abundant, thermally stable TE-nanostructures are dispersed and then intimately embedded inside a protective, mechanically reliable tetragonal ZrO2 (TZP) ceramic matrix with a low thermal conductivity. We also demonstrate an experimental proof-of-principle verification of our concept in reduced-graphene oxide (GO)–3 mol% Y2O3–ZrO2 (3YSZ or 3Y-TZP) nanocomposite system. TE characterizations suggest that our protective TZP matrix does not degrade the intrinsic TE property of the reduced GO network. These preliminary results are promising and encouraging to start research on similar TZP-matrix TE-nanocomposites, which contain more effective TE-nanostructures with larger intrinsic power factors. In this regard, we propose a scalable approach for fabrication of similar dense TE-nanocomposites composed of other one-dimensional and/or two-dimensional TE-nanostructures, which involves an aqueous colloidal approach and a subsequent spark plasma sintering. These new TZP-matrix TE-nanocomposites could be used for sustainable clean power generation, especially in mechanically harsh environments with thermal/mechanical shocks and vibrations, where energy availability, reliability and durability are more important than the energy efficiency. Considering the excellent biocompatibility of TZP matrix, they could even be used inside the body to power implanted medical devices
    corecore