2 research outputs found

    A Quantitative Comparison among Different Algorithms for Defects Detection on Aluminum with the Pulsed Thermography Technique

    No full text
    Pulsed thermography is commonly used as a non-destructive technique for evaluating defects within materials and components. In the last few years, many algorithms have been developed with the aim to detect defects and different methods have been used for detecting their size and depth. However, only few works in the literature reported a comparison among the different algorithms in terms of the number of detected defects, the time spent in testing and analysis, and the quantitative evaluation of size and depth. In this work, starting from a pulsed thermographic test carried out on an aluminum specimen with twenty flat bottom holes of known nominal size and depth, different algorithms have been used with the aim to obtain a comparison among them in terms of signal to background contrast (SBC) and number of detected defects by analyzing different time intervals. Moreover, the correlation between SBC and the aspect ratio of the defects has been investigated. The algorithms used have been: Pulsed Phase Thermography (PPT), Slope, Correlation Coefficient (R2), Thermal Signal Reconstruction (TSR) and Principal Component Thermography (PCT). The results showed the advantages, disadvantages, and sensitivity of the various thermographic algorithms

    A Comparison among Different Ways to Investigate Composite Materials with Lock-In Thermography: The Multi-Frequency Approach

    No full text
    The main goal of non-destructive testing is the detection of defects early enough to avoid catastrophic failure with particular interest for the inspection of aerospace structures; under this aspect, all methods for fast and reliable inspection deserve special attention. In this sense, active thermography for non-destructive testing enables contactless, fast, remote, and not expensive control of materials and structures. Furthermore, different works have confirmed the potentials of lock-in thermography as a flexible technique for its peculiarity to be performed by means of a low-cost set-up. In this work, a new approach called the multi-frequency via software approach (MFS), based on the superimposition via software of two square waves with two different main excitation frequencies, has been used to inspect a sample in carbon fiber reinforced polymers (CFRP) material with imposed defects of different materials, sizes and depths, by means of lock-in thermography. The advantages and disadvantages of the multi-frequency approach have been highlighted by comparing quantitatively the MFS with the traditional excitation methods (sine and square waves)
    corecore