389 research outputs found

    Towards Equity in Health: Researchers Take Stock.

    Get PDF
    For the 2016 end-of-the-year editorial, the PLOS Medicine editors asked 7 global health leaders to discuss developments relevant to the equitable provision of medical care to all populations. The result is a collection of expert views on ethical trial design, research during outbreaks, high-burden infectious diseases, diversity in research and protection of migrants

    Population sequencing data reveal a compendium of mutational processes in human germline

    Get PDF
    Mechanistic processes underlying human germline mutations remain largely unknown.Variation in mutation rate and spectra along the genome is informative about the biological mechanisms. We statistically decompose this variation into separate processes using a blind source separation technique. The analysis of a large-scale whole genome sequencing dataset (TOPMed) reveals nine processes that explain the variation in mutation properties between loci. Seven of these processes lend themselves to a biological interpretation. One process is driven by bulky DNA lesions that resolve asymmetrically with respect to transcription and replication. Two processes independently track direction of replication fork and replication timing. We identify a mutagenic effect of active demethylation primarily acting in regulatory regions. We also demonstrate that a recently discovered mutagenic process specific to oocytes can be localized solely from population sequencing data. This process is spread across all chromosomes and is highly asymmetric with respect to the direction of transcription, suggesting a major role of DNA damage

    PCA-Correlated SNPs for Structure Identification in Worldwide Human Populations

    Get PDF
    Existing methods to ascertain small sets of markers for the identification of human population structure require prior knowledge of individual ancestry. Based on Principal Components Analysis (PCA), and recent results in theoretical computer science, we present a novel algorithm that, applied on genomewide data, selects small subsets of SNPs (PCA-correlated SNPs) to reproduce the structure found by PCA on the complete dataset, without use of ancestry information. Evaluating our method on a previously described dataset (10,805 SNPs, 11 populations), we demonstrate that a very small set of PCA-correlated SNPs can be effectively employed to assign individuals to particular continents or populations, using a simple clustering algorithm. We validate our methods on the HapMap populations and achieve perfect intercontinental differentiation with 14 PCA-correlated SNPs. The Chinese and Japanese populations can be easily differentiated using less than 100 PCA-correlated SNPs ascertained after evaluating 1.7 million SNPs from HapMap. We show that, in general, structure informative SNPs are not portable across geographic regions. However, we manage to identify a general set of 50 PCA-correlated SNPs that effectively assigns individuals to one of nine different populations. Compared to analysis with the measure of informativeness, our methods, although unsupervised, achieved similar results. We proceed to demonstrate that our algorithm can be effectively used for the analysis of admixed populations without having to trace the origin of individuals. Analyzing a Puerto Rican dataset (192 individuals, 7,257 SNPs), we show that PCA-correlated SNPs can be used to successfully predict structure and ancestry proportions. We subsequently validate these SNPs for structure identification in an independent Puerto Rican dataset. The algorithm that we introduce runs in seconds and can be easily applied on large genome-wide datasets, facilitating the identification of population substructure, stratification assessment in multi-stage whole-genome association studies, and the study of demographic history in human populations

    The Effects of Migration and Assortative Mating on Admixture Linkage Disequilibrium

    Get PDF
    Statistical models in medical and population genetics typically assume that individuals assort randomly in a population. While this simplifies model complexity, it contradicts an increasing body of evidence of nonrandom mating in human populations. Specifically, it has been shown that assortative mating is significantly affected by genomic ancestry. In this work, we examine the effects of ancestry-assortative mating on the linkage disequilibrium between local ancestry tracks of individuals in an admixed population. To accomplish this, we develop an extension to the Wright-Fisher model that allows for ancestry-based assortative mating. We show that ancestry-assortment perturbs the distribution of local ancestry linkage disequilibrium (LAD) and the variance of ancestry in a population as a function of the number of generations since admixture. This assortment effect can induce errors in demographic inference of admixed populations when methods assume random mating. We derive closed form formulae for LAD under an assortative-mating model with and without migration. We observe that LAD depends on the correlation of global ancestry of couples in each generation, the migration rate of each of the ancestral populations, the initial proportions of ancestral populations, and the number of generations since admixture. We also present the first direct evidence of ancestry-assortment in African Americans and examine LAD in simulated and real admixed population data of African Americans. We find that demographic inference under the assumption of random mating significantly underestimates the number of generations since admixture, and that accounting for assortative mating using the patterns of LAD results in estimates that more closely agrees with the historical narrative

    Identification of CFTR variants in Latino patients with cystic fibrosis from the Dominican Republic and Puerto Rico

    Full text link
    BackgroundIn cystic fibrosis (CF), the spectrum and frequency of CFTR variants differ by geography and race/ethnicity. CFTR variants in White patients are wellâ described compared with Latino patients. No studies of CFTR variants have been done in patients with CF in the Dominican Republic or Puerto Rico.MethodsCFTR was sequenced in 61 Dominican Republican patients and 21 Puerto Rican patients with CF and greater than â â â â 60â mmol/L sweat chloride. The spectrum of CFTR variants was identified and the proportion of patients with 0, 1, or 2 CFTR variants identified was determined. The functional effects of identified CFTR variants were investigated using clinical annotation databases and computational prediction tools.ResultsOur study found 10% of Dominican patients had two CFTR variants identified compared with 81% of Puerto Rican patients. No CFTR variants were identified in 69% of Dominican patients and 10% of Puerto Rican patients. In Dominican patients, there were 19 identified CFTR variants, accounting for 25 out of 122 disease alleles (20%). In Puerto Rican patients, there were 16 identified CFTR variants, accounting for 36 out of 42 disease alleles (86%) in Puerto Rican patients. Thirty CFTR variants were identified overall. The most frequent variants for Dominican patients were p.Phe508del and p.Ala559Thr and for Puerto Rican patients were p.Phe508del, p.Arg1066Cys, p.Arg334Trp, and p.I507del.ConclusionsIn this first description of the CFTR variants in patients with CF from the Dominican Republic and Puerto Rico, there was a low detection rate of two CFTR variants after full sequencing with the majority of patients from the Dominican Republic without identified variants.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153634/1/ppul24549.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153634/2/ppul24549_am.pd

    COMT Val 158 Met polymorphism is associated with post-traumatic stress disorder and functional outcome following mild traumatic brain injury

    Get PDF
    Mild traumatic brain injury (mTBI) results in variable clinical trajectories and outcomes. The source of variability remains unclear, but may involve genetic variations, such as single nucleotide polymorphisms (SNPs). A SNP in catechol-o-methyltransferase (COMT) is suggested to influence development of post-traumatic stress disorder (PTSD), but its role in TBI remains unclear. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val158Met polymorphism is associated with PTSD and global functional outcome as measured by the PTSD Checklist - Civilian Version and Glasgow Outcome Scale Extended (GOSE), respectively. Results in 93 predominately Caucasian subjects with mTBI show that the COMT Met158 allele is associated with lower incidence of PTSD (univariate odds ratio (OR) of 0.25, 95% CI [0.09-0.69]) and higher GOSE scores (univariate OR 2.87, 95% CI [1.20-6.86]) 6-months following injury. The COMT Val158Met genotype and PTSD association persists after controlling for race (multivariable OR of 0.29, 95% CI [0.10-0.83]) and pre-existing psychiatric disorders/substance abuse (multivariable OR of 0.32, 95% CI [0.11-0.97]). PTSD emerged as a strong predictor of poorer outcome on GOSE (multivariable OR 0.09, 95% CI [0.03-0.26]), which persists after controlling for age, GCS, and race. When accounting for PTSD in multivariable analysis, the association of COMT genotype and GOSE did not remain significant (multivariable OR 1.73, 95% CI [0.69-4.35]). Whether COMT genotype indirectly influences global functional outcome through PTSD remains to be determined and larger studies in more diverse populations are needed to confirm these findings
    corecore