11 research outputs found
Numerical method for solving a class of nonlinear elliptic inverse problems
AbstractThis paper discusses a method to solve a family of nonlinear inverse problems with Cauchy conditions on a part of the boundary and no condition at all on another part. An iterative boundary element procedure is proposed. The scheme uses a dynamically estimated relaxation parameter on the under-specified boundary. Various types of convergence, boundary condition formulations and effects of added small perturbations into the input data are investigated. The numerical results show that the method produces a stable reasonably approximate solution
Evaluating the performance of SURFEXv5 as a new land surface scheme for the ALADINcy36 and ALARO-0 models
The newly developed land surface scheme SURFEX (SURFace EXternalisee) is implemented into a limited-area numerical weather prediction model running operationally in a number of countries of the ALADIN and HIRLAM consortia. The primary question addressed is the ability of SURFEX to be used as a new land surface scheme and thus assessing its potential use in an operational configuration instead of the original ISBA (Interactions between Soil, Biosphere, and Atmosphere) scheme. The results show that the introduction of SURFEX either shows improvement for or has a neutral impact on the 2m temperature, 2m relative humidity and 10m wind. However, it seems that SURFEX has a tendency to produce higher maximum temperatures at high-elevation stations during winter daytime, which degrades the 2m temperature scores. In addition, surface radiative and energy fluxes improve compared to observations from the Cabauw tower. The results also show that promising improvements with a demonstrated positive impact on the forecast performance are achieved by introducing the town energy balance (TEB) scheme. It was found that the use of SURFEX has a neutral impact on the precipitation scores. However, the implementation of TEB within SURFEX for a high-resolution run tends to cause rainfall to be locally concentrated, and the total accumulated precipitation obviously decreases during the summer. One of the novel features developed in SURFEX is the availability of a more advanced surface data assimilation using the extended Kalman filter. The results over Belgium show that the forecast scores are similar between the extended Kalman filter and the classical optimal interpolation scheme. Finally, concerning the vertical scores, the introduction of SURFEX either shows improvement for or has a neutral impact in the free atmosphere
The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes
CC Attribution 3.0 License.Final revised paper also available at http://www.geosci-model-dev.net/6/929/2013/gmd-6-929-2013.pdfInternational audienceSURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surface: nature, town, inland water and ocean. It can be run either coupled or in offline mode. It is mostly based on pre-existing, well validated scientific models. It can be used in offline mode (from point scale to global runs) or fully coupled with an atmospheric model. SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. It also includes a data assimilation module. The main principles of the organization of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally the main applications of the code are summarized. The current applications are extremely diverse, ranging from surface monitoring and hydrology to numerical weather prediction and global climate simulations. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage
Evaluating the performance of SURFEXv5 as a new land surface scheme for the ALADINcy36 and ALARO-0 models
status: publishe
The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes
SURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean. It is mostly based on pre-existing, well-validated scientific models that are continuously improved. The motivation for the building of SURFEX is to use strictly identical scientific models in a high range of applications in order to mutualise the research and development efforts. SURFEX can be run in offline mode (0-D or 2-D runs) or in coupled mode (from mesoscale models to numerical weather prediction and climate models). An assimilation mode is included for numerical weather prediction and monitoring. In addition to momentum, heat and water fluxes, SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. The main principles of the organisation of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally, the main applications of the code are summarised. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage