46 research outputs found
Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress tensors
We extend to curved backgrounds all flat-space scalar field models that obey purely second-order equations, while maintaining their second-order dependence on both field and metric. This extension simultaneously restores to second order the, originally higher derivative, stress tensors as well. The process is transparent and uniform for all dimensions
Rare Kaon Decays in the -Expansion
We study the unknown coupling constants that appear at order in the
Chiral Perturbation Theory analysis of ,
and decays. To that
end, we compute the chiral realization of the Hamiltonian
in the framework of the -expansion of the low-energy action. The
phenomenological implications are also discussed.Comment: 18 pages, LaTeX, CPT-92/P.279
Model for a Universe described by a non-minimally coupled scalar field and interacting dark matter
In this work it is investigated the evolution of a Universe where a scalar
field, non-minimally coupled to space-time curvature, plays the role of
quintessence and drives the Universe to a present accelerated expansion. A
non-relativistic dark matter constituent that interacts directly with dark
energy is also considered, where the dark matter particle mass is assumed to be
proportional to the value of the scalar field. Two models for dark matter
pressure are considered: the usual one, pressureless, and another that comes
from a thermodynamic theory and relates the pressure with the coupling between
the scalar field and the curvature scalar. Although the model has a strong
dependence on the initial conditions, it is shown that the mixture consisted of
dark components plus baryonic matter and radiation can reproduce the expected
red-shift behavior of the deceleration parameter, density parameters and
luminosity distance.Comment: 11 pages and 6 figures. To appear in GR
Tensor-scalar gravity and binary-pulsar experiments
Some recently discovered nonperturbative strong-field effects in
tensor-scalar theories of gravitation are interpreted as a scalar analog of
ferromagnetism: "spontaneous scalarization". This phenomenon leads to very
significant deviations from general relativity in conditions involving strong
gravitational fields, notably binary-pulsar experiments. Contrary to
solar-system experiments, these deviations do not necessarily vanish when the
weak-field scalar coupling tends to zero. We compute the scalar "form factors"
measuring these deviations, and notably a parameter entering the pulsar timing
observable gamma through scalar-field-induced variations of the inertia moment
of the pulsar. An exploratory investigation of the confrontation between
tensor-scalar theories and binary-pulsar experiments shows that nonperturbative
scalar field effects are already very tightly constrained by published data on
three binary-pulsar systems. We contrast the probing power of pulsar
experiments with that of solar-system ones by plotting the regions they exclude
in a generic two-dimensional plane of tensor-scalar theories.Comment: 35 pages, REVTeX 3.0, uses epsf.tex to include 9 Postscript figure
Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: the DURAPOP randomised clinical trial
PURPOSE: Shortening the duration of antibiotic therapy (ABT) is a key measure in antimicrobial stewardship. The optimal duration of ABT for treatment of postoperative intra-abdominal infections (PIAI) in critically ill patients is unknown.
METHODS: A multicentre prospective randomised trial conducted in 21 French intensive care units (ICU) between May 2011 and February 2015 compared the efficacy and safety of 8-day versus 15-day antibiotic therapy in critically ill patients with PIAI. Among 410 eligible patients (adequate source control and ABT on day 0), 249 patients were randomly assigned on day 8 to either stop ABT immediately (n = 126) or to continue ABT until day 15 (n = 123). The primary endpoint was the number of antibiotic-free days between randomisation (day 8) and day 28. Secondary outcomes were death, ICU and hospital length of stay, emergence of multidrug-resistant (MDR) bacteria and reoperation rate, with 45-day follow-up.
RESULTS: Patients treated for 8 days had a higher median number of antibiotic-free days than those treated for 15 days (15 [6-20] vs 12 [6-13] days, respectively; P < 0.0001) (Wilcoxon rank difference 4.99 days [95% CI 2.99-6.00; P < 0.0001). Equivalence was established in terms of 45-day mortality (rate difference 0.038, 95% CI - 0.013 to 0.061). Treatments did not differ in terms of ICU and hospital length of stay, emergence of MDR bacteria or reoperation rate, while subsequent drainages between day 8 and day 45 were observed following short-course ABT (P = 0.041).
CONCLUSION: Short-course antibiotic therapy in critically ill ICU patients with PIAI reduces antibiotic exposure. Continuation of treatment until day 15 is not associated with any clinical benefit. CLINICALTRIALS.
GOV IDENTIFIER: NCT01311765
Testing Alternative Theories of Gravity using LISA
We investigate the possible bounds which could be placed on alternative
theories of gravity using gravitational wave detection from inspiralling
compact binaries with the proposed LISA space interferometer. Specifically, we
estimate lower bounds on the coupling parameter \omega of scalar-tensor
theories of the Brans-Dicke type and on the Compton wavelength of the graviton
\lambda_g in hypothetical massive graviton theories. In these theories,
modifications of the gravitational radiation damping formulae or of the
propagation of the waves translate into a change in the phase evolution of the
observed gravitational waveform. We obtain the bounds through the technique of
matched filtering, employing the LISA Sensitivity Curve Generator (SCG),
available online. For a neutron star inspiralling into a 10^3 M_sun black hole
in the Virgo Cluster, in a two-year integration, we find a lower bound \omega >
3 * 10^5. For lower-mass black holes, the bound could be as large as 2 * 10^6.
The bound is independent of LISA arm length, but is inversely proportional to
the LISA position noise error. Lower bounds on the graviton Compton wavelength
ranging from 10^15 km to 5 * 10^16 km can be obtained from one-year
observations of massive binary black hole inspirals at cosmological distances
(3 Gpc), for masses ranging from 10^4 to 10^7 M_sun. For the highest-mass
systems (10^7 M_sun), the bound is proportional to (LISA arm length)^{1/2} and
to (LISA acceleration noise)^{-1/2}. For the others, the bound is independent
of these parameters because of the dominance of white-dwarf confusion noise in
the relevant part of the frequency spectrum. These bounds improve and extend
earlier work which used analytic formulae for the noise curves.Comment: 16 pages, 9 figures, submitted to Classical & Quantum Gravit
Reconstruction of a scalar-tensor theory of gravity in an accelerating universe
The present acceleration of the Universe strongly indicated by recent
observational data can be modeled in the scope of a scalar-tensor theory of
gravity. We show that it is possible to determine the structure of this theory
(the scalar field potential and the functional form of the scalar-gravity
coupling) along with the present density of dustlike matter from the following
two observable cosmological functions: the luminosity distance and the linear
density perturbation in the dustlike matter component as functions of redshift.
Explicit results are presented in the first order in the small inverse
Brans-Dicke parameter 1/omega.Comment: 4 pages, LaTeX 2.09, REVTeX 3.0, two-column forma
Semi-Analytic Stellar Structure in Scalar-Tensor Gravity
Precision tests of gravity can be used to constrain the properties of
hypothetical very light scalar fields, but these tests depend crucially on how
macroscopic astrophysical objects couple to the new scalar field. We develop
quasi-analytic methods for solving the equations of stellar structure using
scalar-tensor gravity, with the goal of seeing how stellar properties depend on
assumptions made about the scalar coupling at a microscopic level. We
illustrate these methods by applying them to Brans-Dicke scalars, and their
generalization in which the scalar-matter coupling is a weak function of the
scalar field. The four observable parameters that characterize the fields
external to a spherically symmetric star (the stellar radius, R, mass, M,
scalar `charge', Q, and the scalar's asymptotic value, phi_infty) are subject
to two relations because of the matching to the interior solution, generalizing
the usual mass-radius, M(R), relation of General Relativity. We identify how
these relations depend on the microscopic scalar couplings, agreeing with
earlier workers when comparisons are possible. Explicit analytical solutions
are obtained for the instructive toy model of constant-density stars, whose
properties we compare to more realistic equations of state for neutron star
models.Comment: 39 pages, 9 figure