9,768 research outputs found

    Environmental Policies and Mergers’ Externalities

    Get PDF
    A Cournot oligopolistic setting model of trade is characterized by local and foreign firms competing in the presence of pollution quota and tax. Local firms are foreign-owned (FDI) and repatriate their profits. First, we analyze the impact on welfare given by the merger of the local firms, as a response to external firms’ competition and pollution abatement costs. Second, when merger is welfare decreasing, we study the best response of the government in order to compensate this negative externality. Finally, we compare the pollution quota and tax in order to determine their efficiency as a policy instrument.environmental policies, mergers, emission permits

    The method of Gaussian weighted trajectories. V. On the 1GB procedure for polyatomic processes

    Full text link
    In recent years, many chemical reactions have been studied by means of the quasi-classical trajectory (QCT) method within the Gaussian binning (GB) procedure. The latter consists in "quantizing" the final vibrational actions in Bohr spirit by putting strong emphasis on the trajectories reaching the products with vibrational actions close to integer values. A major drawback of this procedure is that if N is the number of product vibrational modes, the amount of trajectories necessary to converge the calculations is ~ 10^N larger than with the standard QCT method. Applying it to polyatomic processes is thus problematic. In a recent paper, however, Czako and Bowman propose to quantize the total vibrational energy instead of the vibrational actions [G. Czako and J. M. Bowman, J. Chem. Phys., 131, 244302 (2009)], a procedure called 1GB here. The calculations are then only ~ 10 times more time-consuming than with the standard QCT method, allowing thereby for considerable numerical saving. In this paper, we propose some theoretical arguments supporting the 1GB procedure and check its validity on model test cases as well as the prototype four-atom reaction OH+D_2 -> HOD+D

    Defect chemistry and transport properties of BaxCe0.85M0.15O3-d

    Get PDF
    The site-incorporation mechanism of M3+ dopants into A2+B4+O3 perovskites controls the overall defect chemistry and thus their transport properties. For charge-balance reasons, incorporation onto the A2+-site would require the creation of negatively charged point defects (such as cation vacancies), whereas incorporation onto the B4+-site is accompanied by the generation of positively charged defects, typically oxygen vacancies. Oxygen-vacancy content, in turn, is relevant to proton-conducting oxides in which protons are introduced via the dissolution of hydroxyl ions at vacant oxygen sites. We propose here, on the basis of x-ray powder diffraction studies, electron microscopy, chemical analysis, thermal gravimetric analysis, and alternating current impedance spectroscopy, that nominally B-site doped barium cerate can exhibit dopant partitioning as a consequence of barium evaporation at elevated temperatures. Such partitioning and the presence of significant dopant concentrations on the A-site negatively impact proton conductivity. Specific materials examined are BaxCe0.85M0.15O3-d (x = 0.85 - 1.20; M = Nd, Gd, Yb). The compositional limits for the maximum A-site incorporation are experimentally determined to be: (Ba0.919Nd0.081)(Ce0.919Nd0.081)O3, (Ba0.974Gd0.026)(Ce0.872Gd0.128)O2.875, and Ba(Ce0.85Yb0.15)O2.925. As a consequence of the greater ability of larger cations to exist on the Ba site, the H2O adsorption and proton conductivities of large-cation doped barium cerates are lower than those of small-cation doped analogs

    Physical processes leading to surface inhomogeneities: the case of rotation

    Full text link
    In this lecture I discuss the bulk surface heterogeneity of rotating stars, namely gravity darkening. I especially detail the derivation of the omega-model of Espinosa Lara & Rieutord (2011), which gives the gravity darkening in early-type stars. I also discuss the problem of deriving gravity darkening in stars owning a convective envelope and in those that are members of a binary system.Comment: 23 pages, 11 figure, Lecture given to the school on the cartography of the Sun and the stars (May 2014 in Besan\c{c}on), to appear in LNP, Neiner and Rozelot edts V2: typos correcte

    Symmetry Nonrestoration at High Temperature in Little Higgs Models

    Full text link
    A detailed study of the high temperature dynamics of the scalar sector of Little Higgs scenarios, proposed to stabilize the electroweak scale, shows that the electroweak gauge symmetry remains broken even at temperatures much larger than the electroweak scale. Although we give explicit results for a particular modification of the Littlest Higgs model, we expect that the main features are generic. As a spin-off, we introduce a novel way of dealing with scalar fluctuations in nonlinear sigma models, which might be of interest for phenomenological applications.Comment: 23 pages, LaTeX, 4 figure

    Complete two-loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry

    Get PDF
    I present a method for accurately calculating the pole mass of the lightest Higgs scalar boson in supersymmetric extensions of the Standard Model, using a mass-independent renormalization scheme. The Higgs scalar self-energies are approximated by supplementing the exact one-loop results with the second derivatives of the complete two-loop effective potential in Landau gauge. I discuss the dependence of this approximation on the choice of renormalization scale, and note the existence of particularly poor choices which fortunately can be easily identified and avoided. For typical input parameters, the variation in the calculated Higgs mass over a wide range of renormalization scales is found to be of order a few hundred MeV or less, and is significantly improved over previous approximations.Comment: 5 pages, 1 figure. References added, sample test model parameters listed, minor wording change

    Towards a Media Interpretation Framework for the Semantic Web

    Get PDF
    We present a framework for media interpretation that leverages low-level information extraction to a higher level of abstraction in order to support semantics-based information retrieval for the Semantic Web. The overall goal of the framework is to provide high-level content descriptions of documents for maximizing precision and recall of semantics-based information retrieval
    • 

    corecore