356 research outputs found

    Disk Imaging Survey of Chemistry with SMA: II. Southern Sky Protoplanetary Disk Data and Full Sample Statistics

    Full text link
    This is the second in a series of papers based on data from DISCS, a Submillimeter Array observing program aimed at spatially and spectrally resolving the chemical composition of 12 protoplanetary disks. We present data on six Southern sky sources - IM Lup, SAO 206462 (HD 135344b), HD 142527, AS 209, AS 205 and V4046 Sgr - which complement the six sources in the Taurus star forming region reported previously. CO 2-1 and HCO+ 3-2 emission are detected and resolved in all disks and show velocity patterns consistent with Keplerian rotation. Where detected, the emission from DCO+ 3-2, N2H+ 3-2, H2CO 3-2 and 4-3,HCN 3-2 and CN 2-1 are also generally spatially resolved. The detection rates are highest toward the M and K stars, while the F star SAO 206462 has only weak CN and HCN emission, and H2CO alone is detected toward HD 142527. These findings together with the statistics from the previous Taurus disks, support the hypothesis that high detection rates of many small molecules depend on the presence of a cold and protected disk midplane, which is less common around F and A stars compared to M and K stars. Disk-averaged variations in the proposed radiation tracer CN/HCN are found to be small, despite two orders of magnitude range of spectral types and accretion rates. In contrast, the resolved images suggest that the CN/HCN emission ratio varies with disk radius in at least two of the systems. There are no clear observational differences in the disk chemistry between the classical/full T Tauri disks and transitional disks. Furthermore, the observed line emission does not depend on measured accretion luminosities or the number of infrared lines detected, which suggests that the chemistry outside of 100 AU is not coupled to the physical processes that drive the chemistry in the innermost few AU.Comment: accepted for publication in ApJ, 41 pages including 7 figure

    A Cross-Sectional Study: Dietary Micronutrient Levels in Allied Health and Nursing Students

    Get PDF
    The adequate intake of micronutrients is important to maintain optimal health and prevent nutritional disorders and chronic disease. Studies have shown that medical students often reduce self-care behaviors and lack adequate dietary intake, leading to nutritional deficiencies. In this quantitative cross-sectional study, measurements of micronutrient levels in a sample of allied health and nursing students were compared to Recommended Daily Allowance (RDA) values. NutritionQuest Data-on-Demand System was used to analyze nutrients and food group intake. The postpositivist paradigm was used to examine how the independent and dependent variables relate to each other. Using a one-sample t test, a comparison of average micronutrient intake among study participants with RDA values for those micronutrients showed that average micronutrient intake in the study population was higher than recommended values. Two sample t-test results showed no significant difference in average intake of micronutrients among participants with high and low income levels, or with high and low stress levels. As the normality assumption was not satisfied by the outcome variables, nonparametric tests were used to evaluate hypotheses. While this finding does not support the original hypothesis, it could have implications for the role of allied health and nursing practitioners in the care of both their patients and members of their medical team. Conversely, an assumption of this study was that a high level of similarity between the traditional medical student population and the allied health and nursing population in terms of nutritional habits may have led to a flaw in the overall research hypothesis. The detection of micronutrient deficiencies in students can bring awareness to improve nutritional intake and initiate a change in how public health officials advocate healthy and balanced diets

    Ophiolite-Related Ultramafic Rocks (Serpentinites) in the Caribbean Region : a Review of their Occurrence, Composition, Origin, Emplacement and Ni-Laterite Soil Formation

    Get PDF
    Ultramafic rocks, mainly serpentinized peridotites of mantle origin, are mostly associated with the ophiolites of Mesozoic age that occur in belts along three of the margins of the Caribbean plate. The most extensive exposures are in Cuba. The ultramafic-mafic association (ophiolites) were formed and emplaced in several different tectonic environments. Mineralogical studies of the ultramafic rocks and the chemistry of the associated mafic rocks indicate that most of the ultramafic-mafic associations in both the northern and southern margins of the plate were formed in arc-related environments. There is little mantle peridotite exposed in the ophiolitic associations of the west coast of Central America, in the south Caribbean in Curacao and in the Andean belts in Colombia. In these occurrences the chemistry and age of the mafic rocks indicates that this association is mainly part of the 89 Ma Caribbean plateau province. The age of the mantle peridotites and associated ophiolites is probably mainly late Jurassic or Early Cretaceous. Emplacement of the ophiolites possibly began in the Early Cretaceous in Hispaniola and Puerto Rico, but most emplacement took place in the Late Cretaceous to Eocene (e.g. Cuba). Along the northern South America plate margin, in the Caribbean mountain belt, emplacement was by major thrusting and probably was not completed until the Oligocene or even the early Miocene. Caribbean mantle peridotites, before serpentinization, were mainly harzburgites, but dunites and lherzolites are also present. In detail, the mineralogical and chemical composition varies even within one ultramafic body, reflecting melting processes and peridotite/melt interaction in the upper mantle. At least for the northern Caribbean, uplift (postemplacement tectonics) exposed the ultramafic massifs as a land surface to effective laterization in the beginning of the Miocene. Tectonic factors, determining the uplift, exposing the peridotites to weathering varied. In the northern Caribbean, in Guatemala, Jamaica, and Hispaniola, uplift occurred as a result of transpresional movement along pre-existing major faults. In Cuba, uplift occurred on a regional scale, determined by isostatic adjustment. In the south Caribbean, uplift of the Cordillera de la Costa and Serrania del Interior exposing the peridotites, also appears to be related to strike-slip movement along the El Pilar fault system. In the Caribbean, Ni-laterite deposits are currently being mined in the central Dominican Republic, eastern Cuba, northern Venezuela and northwest Colombia. Although apparently formed over ultramafic rocks of similar composition and under similar climatic conditions, the composition of the lateritic soils varies. Factors that probably determined these differences in laterite composition are geomorphology, topography, drainage and tectonics. According to the mineralogy of principal ore-bearing phases, Dominican Ni-laterite deposits are classified as the hydrous silicate-type. The main Ni-bearing minerals are hydrated Mg-Ni silicates (serpentine and "garnierite") occurring deeper in the profile (saprolite horizon). In contrast, in the deposits of eastern Cuba, the Ni and Co occurs mainly in the limonite zone composed of Fe hydroxides and oxides as the dominant mineralogy in the upper part of the profile, and are classified as the oxide-type

    Disk Imaging Survey of Chemistry with SMA (DISCS): I. Taurus Protoplanetary Disk Data

    Full text link
    Chemistry plays an important role in the structure and evolution of protoplanetary disks, with implications for the composition of comets and planets. This is the first of a series of papers based on data from DISCS, a Submillimeter Array survey of the chemical composition of protoplanetary disks. The six Taurus sources in the program (DM Tau, AA Tau, LkCa 15, GM Aur, CQ Tau and MWC 480) range in stellar spectral type from M1 to A4 and offer an opportunity to test the effects of stellar luminosity on the disk chemistry. The disks were observed in 10 different lines at ~3" resolution and an rms of ~100 mJy beam-1 at ~0.5 km s-1. The four brightest lines are CO 2-1, HCO+ 3-2, CN 2_3-1_2 and HCN 3-2 and these are detected toward all sources (except for HCN toward CQ Tau). The weaker lines of CN 2_2-1_1, DCO+ 3-2, N2H+ 3-2, H2CO 3_03-2_02 and 4_14-3_13 are detected toward two to three disks each, and DCN 3-2 only toward LkCa 15. CH3OH 4_21-3_12 and c-C3H2 are not detected. There is no obvious difference between the T Tauri and Herbig Ae sources with regard to CN and HCN intensities. In contrast, DCO+, DCN, N2H+ and H2CO are detected only toward the T Tauri stars, suggesting that the disks around Herbig Ae stars lack cold regions for long enough timescales to allow for efficient deuterium chemistry, CO freeze-out, and grain chemistry.Comment: 29 pages, 4 figures, accepted for publication in Ap

    A Spitzer IRS Survey of NGC 1333: Insights into disk evolution from a very young cluster

    Full text link
    We report on the {\lambda} = 5-36{\mu}m Spitzer Infrared Spectrograph spectra of 79 young stellar objects in the very young nearby cluster NGC 1333. NGC 1333's youth enables the study of early protoplanetary disk properties, such as the degree of settling as well as the formation of gaps and clearings. We construct spectral energy distributions (SEDs) using our IRS data as well as published photometry and classify our sample into SED classes. Using "extinction-free" spectral indices, we determine whether the disk, envelope, or photosphere dominates the spectrum. We analyze the dereddened spectra of objects which show disk dominated emission using spectral indices and properties of silicate features in order to study the vertical and radial structure of protoplanetary disks in NGC 1333. At least nine objects in our sample of NGC 1333 show signs of large (several AU) radial gaps or clearings in their inner disk. Disks with radial gaps in NGC 1333 show more-nearly pristine silicate dust than their radially continuous counterparts. We compare properties of disks in NGC 1333 to those in three other well studied regions, Taurus-Auriga, Ophiuchus and Chamaeleon I, and find no difference in their degree of sedimentation and dust processing.Comment: 67 pages, 20 figures, accepted to The Astrophysical Journal Supplement Serie

    Structure and Composition of Two Transitional Circumstellar Disks in Corona Australis

    Get PDF
    The late stages of evolution of the primordial circumstellar disks surrounding young stars are poorly understood, yet vital to constrain theories of planet formation. We consider basic structural models for the disks around two ~10 Myr-old members of the nearby RCrA association, RX J1842.9-3532 and RX J1852.3-3700. We present new arcsecond-resolution maps of their 230 GHz continuum emission from the Submillimeter Array and unresolved CO(3-2) spectra from the Atacama Submillimeter Telescope Experiment. By combining these data with broadband fluxes from the literature and infrared fluxes and spectra from the catalog of the Formation and Evolution of Planetary Systems (FEPS) Legacy program on the Spitzer Space Telescope, we assemble a multiwavelength data set probing the gas and dust disks. Using the Monte Carlo radiative transfer code RADMC to model simultaneously the SED and millimeter continuum visibilities, we derive basic dust disk properties and identify an inner cavity of radius 16 AU in the disk around RX J1852.3-3700. We also identify an optically thin 5 AU cavity in the disk around RX J1842.9-3532, with a small amount of optically thick material close to the star. The molecular line observations suggest an intermediate disk inclination in RX J1842.9-3532, consistent with the continuum emission. In combination with the dust models, the molecular data allow us to derive a lower CO content than expected, suggesting that the process of gas clearing is likely underway in both systems, perhaps simultaneously with planet formation.Comment: 11 pages, 5 figures, accepted for publication in A

    A Spitzer Census of Transitional Protoplanetary Disks with AU-Scale Inner Holes

    Full text link
    [abridged] Protoplanetary disks with AU-scale inner clearings, often referred to as transitional disks, provide a unique sample for understanding disk dissipation mechanisms and possible connections to planet formation. Observations of young stellar clusters with the Spitzer Space Telescope have amassed mid-infrared spectral energy distributions for thousands of star-disk systems from which transition disks can be identified. From a sample of 8 relatively nearby young regions (d <= 400 pc), we have identified about 20 such objects, which we term "classical" transition disks, spanning a wide range of stellar age and mass. We also identified two additional categories representing more ambiguous cases: "warm excess" objects with transition-like spectral energy distributions but moderate excess at 5.8 microns, and "weak excess" objects with smaller 24 micron excess that may be optically thin or exhibit advanced dust grain growth and settling. From existing Halpha emission measurements, we find evidence for different accretion activity among the three categories, with a majority of the classical and warm excess transition objects still accreting gas through their inner holes and onto the central stars, while a smaller fraction of the weak transition objects are accreting at detectable rates. We find a possible age dependence to the frequency of classical transition objects, with fractions relative to the total population of disks in a given region of a few percent at 1-2 Myr rising to 10-20% at 3-10 Myr. The trend is even stronger if the weak and warm excess objects are included. Classical transition disks appear to be less common, and weak transition disks more common, around lower-mass stars (M <= 0.3 Msun).Comment: 34 pages, 7 figures; accepted to Ap

    Dust Processing and Grain Growth in Protoplanetary Disks in the Taurus-Auriga Star-Forming Region

    Full text link
    Mid-infrared spectra of 65 T Tauri stars (TTS) taken with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope are modeled using dust at two temperatures to probe the radial variation in dust composition in the uppermost layers of protoplanetary disks. Most spectra indicating crystalline silicates require Mg-rich minerals and silica, but a few suggest otherwise. Spectra indicating abundant enstatite at higher temperatures also require crystalline silicates at temperatures lower than those required for spectra showing high abundance of other crystalline silicates. A few spectra show 10 micron complexes of very small equivalent width. They are fit well using abundant crystalline silicates but very few large grains, inconsistent with the expectation that low peak-to-continuum ratio of the 10 micron complex always indicates grain growth. Most spectra in our sample are fit well without using the opacities of large crystalline silicate grains. If large grains grow by agglomeration of submicron grains of all dust types, the amorphous silicate components of these aggregates must typically be more abundant than the crystalline silicate components. Crystalline silicate abundances correlate positively with other such abundances, suggesting that crystalline silicates are processed directly from amorphous silicates and that neither forsterite, enstatite, nor silica are intermediate steps when producing either of the other two. Disks with more dust settling typically have greater crystalline abundances. Large-grain abundance is somewhat correlated with greater settling of disks. The lack of strong correlation is interpreted to mean that settling of large grains is sensitive to individual disk properties. Lower-mass stars have higher abundances of large grains in their inner regions.Comment: 84 pages, 27 figures, submitted to the Astrophysical Journal on 7 November, 200
    • …
    corecore