12 research outputs found
The first case of NSHL by direct impression on EYA1 gene and identification of one novel mutation in MYO7A in the Iranian families
Objective(s): Targeted next-generation sequencing (NGS) provides a consequential opportunity to elucidate genetic factors in known diseases, particularly in profoundly heterogeneous disorders such as non-syndromic hearing loss (NSHL). Hearing impairments could be classified into syndromic and non-syndromic types. This study intended to assess the significance of mutations in these genes to the autosomal recessive/dominant non-syndromic genetic load among Iranian families. Materials and Methods: Two families were involved in this research and two patients were examined by targeted next-generation sequencing. Here we report two novel mutations in the MYO7A and EYA1 genes in two patients detected by targeted NGS. They were confirmed by Sanger sequencing and quantitative real-time PCR techniques. Results: In this investigation, we identified a novel mutation in MYO7A, c.3751G>C, p.A1251P, along with another previously identified mutation (c.1708C>T) in one of the cases. This mutation is located in the MYTH4 protein domain which is a pivotal domain for the myosin function. Another finding in this research was a novel de-novo deletion which deletes the entire EYA1 coding region (EX1-18 DEL). Mutations in EYA1 gene have been found in branchiootorenal (BOR) syndrome. Interestingly the patient with EYA1 deletion did not show any other additional clinical implications apart from HL. This finding might argue for the sole involvement of EYA1 function in the mechanism of hearing. Conclusion: This investigation exhibited that the novel mutations in MYO7A, c.3751G>C, p.A1251P, and EYA1, EX1-18 DEL, were associated with NSHL. Our research increased the mutation spectrum of hearing loss in the Iranian population
Whole‐exome sequencing identified a novel variant in an Iranian patient affected by pycnodysostosis
Abstract Background Whole‐exome sequencing (WES) has emerged as a successful diagnostic tool in molecular genetics laboratories worldwide. In this study, we aimed to find the potential genetic cause of skeletal disease, a heterogeneous disease, revealing the obvious short stature phenotype. In an Iranian family, we used solo‐WES in a suspected patient to decipher the potential genetic cause(s). Methods A comprehensive clinical and genotyping examination was applied to suspect the disease of the patient. The solo clinical WES was exploited, and the derived data were filtered according to the standard pipelines. In order to validate the WES finding, the region harboring the candidate variant in the CTSK gene was amplified from genomic DNA and sequenced directly by Sanger sequencing. Results Sequence analysis revealed a rare novel nonsense variant, p.(Trp320*); c.905G>A, in the CTSK gene (NM_000396.3). In silico analysis shed light on the contribution of the variant to the pathogenicity of pycnodysostosis. This variant was confirmed by Sanger sequencing and further clinical examinations of the patient confirmed the disease. Conclusion The present study shows a rare variant of the CTSK gene, which inherited as autosomal recessive, in an Iranian male patient with pycnodysostosis. Taken together, the novel nonsense CTSK variant meets the criteria of being likely pathogenic according to the American College of Medical Genetics and Genomics‐the Association for Molecular Pathology (ACMG‐AMP) variant interpretation guidelines