114 research outputs found
Natural product-derived therapies for treating drug-resistant epilepsies: From ethnopharmacology to evidence-based medicine
publishedVersio
Zebrafish Bioassay-guided Microfractionation for the Rapid in vivo Identification of Pharmacologically Active Natural Products
The rapid acquisition of structural and bioactivity information on natural products (NPs) at the sub- milligram scale is key for performing efficient bioactivity-guided isolations. Zebrafish offer the possibility of rapid in vivo bioactivity analysis of small molecules at the microgram
scale – an attractive feature when combined with high-resolution fractionation technologies and analytical methods such as UHPLC-TOF-MS and microflow NMR. Numerous biomedically relevant assays are now available in zebrafish, encompassing most indication areas. Zebrafish also provide
the possibility to screen bioactive compounds for potential hepato-, cardio-, and neurotoxicities at a very early stage in the drug discovery process. Here we describe two strategies using zebrafish bioassays for the high-resolution in vivo bioactivity profiling of medicinal plants, using
either a one-step or a two-step procedure for active compound isolation directly into 96-well plates. The analysis of the microfractions by microflow NMR in combination with UHPLC-TOF-MS of the extract enables the rapid dereplication of compounds and an estimation of their microgram quantities
for zebrafish bioassays. Both the one-step and the two-step isolation procedures enable a rapid estimation of the bioactive potential of NPs directly from crude extracts. In summary, we present an in vivo , microgram-scale NP discovery platform combining zebrafish bioassays with microscale
analytics to identify, isolate and evaluate pharmacologically active NPs
N-Benzyl-(2,5-dioxopyrrolidin-1-yl)propanamide (AS-1) with hybrid structure as a candidate for a broad-spectrum antiepileptic drug
In our recent studies, we identified compound N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide (AS-1) as a broad-spectrum hybrid
anticonvulsant which showed potent protection across the most important animal acute seizure models such as the maximal electroshock
(MES) test, the subcutaneous pentylenetetrazole (s.c. PTZ) test, and the 6-Hz (32 mA) test in mice. Therefore, AS-1 may be
recognized as a candidate for new anticonvulsant effective in different types of human epilepsy with a favorable safety margin profile
determined in the rotarod test in mice. In the aim of further pharmacological evaluation of AS-1, in the current study, we examined its
activity in the 6-Hz (44 mA) test, which is known as the model of drug-resistant epilepsy. Furthermore, we determined also the
antiseizure activity in the kindling model of epilepsy induced by repeated injection of pentylenetetrazole (PTZ) in mice. As a result,
AS-1 revealed relatively potent protection in the 6-Hz (44 mA) test, as well as delayed the progression of kindling induced by repeated
injection of PTZ in mice at doses of 15 mg/kg, 30 mg/kg, and 60 mg/kg. Importantly, the isobolographic analysis showed that a
combination of AS-1 and valproic acid (VPA) at the fixed ratio of 1:1 displayed a supra-additive (synergistic) interaction against PTZinduced
seizures inmice. Thus, AS-1may be potentially used in an add-on therapy with VPA. Moreover, incubation of zebrafish larvae
with AS-1 substantially decreased the number, cumulative but not the mean duration of epileptiform-like events in electroencephalographic
assay. Finally, the in vitro ADME-Tox studies revealed that AS-1 is characterized by a very good permeability in the parallel
artificial membrane permeability assay test, excellent metabolic stability on human liver microsomes (HLMs), no significant influence
on CYP3A4/CYP2D6 activity, and moderate inhibition of CYP2C9 in a concentration of 10 M, as well as no hepatotoxic properties in
HepG2 cells (concentration of 10 M)
Induction of seizures and initiation of epileptogenesis by pilocarpine in zebrafish larvae
ObjectivePreclinical models of seizures and epilepsy in rodents contributed substantially to the discovery of currently available antiseizure medications. These were also broadly used for investigation of processes of epileptogenesis. Nevertheless, rodent models pose some limitations, thus, new models using alternative species are in high demand. The aim of this study was to describe a new model of seizures/epilepsy induced by the cholinomimetic agent, pilocarpine (PILO), in larval zebrafish.MethodsLocal field potential (LFP) recordings were conducted to analyze electroencephalographic discharges and correlate it with larval behavior. Hematoxylin and eosin (H&E) staining, as well as TUNEL staining were performed to analyze morphology and apoptosis, respectively. Real-time quantitative polymerase chain reaction (qRT-PCR) was undertaken for gene expression analysis.ResultsAcute exposure to PILO, in a concentration-dependent manner, induces electroencephalographic discharges in larval zebrafish, which behaviorally manifest as decreased locomotion and moving time, but enhanced movement velocity. The PILO-induced seizure-like activity is behaviorally distinct from this induced by the application of chemoconvulsant pentylenetetrazole (PTZ). Zebrafish larvae previously exposed to PILO (2 h), after a washing out period, exhibit spontaneous, unprovoked discharges and apoptotic changes in their brains.SignificanceHere, we comprehensively investigated a new model of PILO-induced seizures/epilepsy in larval zebrafish. We propose that this model may be used to study epileptogenesis and for antiseizure drug screening purposes
Discovery of (R)-N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide [(R)-AS-1], a novel orally bioavailable EAAT2 modulator with drug-like properties and potent antiseizure activity in vivo
[Image: see text] (R)-7 [(R)-AS-1] showed broad-spectrum antiseizure activity across in vivo mouse seizure models: maximal electroshock (MES), 6 Hz (32/44 mA), acute pentylenetetrazol (PTZ), and PTZ-kindling. A remarkable separation between antiseizure activity and CNS-related adverse effects was also observed. In vitro studies with primary glia cultures and COS-7 cells expressing the glutamate transporter EAAT2 showed enhancement of glutamate uptake, revealing a stereoselective positive allosteric modulator (PAM) effect, further supported by molecular docking simulations. (R)-7 [(R)-AS-1] was not active in EAAT1 and EAAT3 assays and did not show significant off-target activity, including interactions with targets reported for marketed antiseizure drugs, indicative of a novel and unprecedented mechanism of action. Both in vivo pharmacokinetic and in vitro absorption, distribution, metabolism, excretion, toxicity (ADME-Tox) profiles confirmed the favorable drug-like potential of the compound. Thus, (R)-7 [(R)-AS-1] may be considered as the first-in-class small-molecule PAM of EAAT2 with potential for further preclinical and clinical development in epilepsy and possibly other CNS disorders
SCN1A overexpression, associated with a genomic region marked by a risk variant for a common epilepsy, raises seizure susceptibility
Mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures is associated with common variation at rs7587026, located in the promoter region of SCN1A. We sought to explore possible underlying mechanisms. SCN1A expression was analysed in hippocampal biopsy specimens of individuals with mesial temporal lobe epilepsy with hippocampal sclerosis who underwent surgical treatment, and hippocampal neuronal cell loss was quantitatively assessed using immunohistochemistry. In healthy individuals, hippocampal volume was measured using MRI. Analyses were performed stratified by rs7587026 type. To study the functional consequences of increased SCN1A expression, we generated, using transposon-mediated bacterial artificial chromosome transgenesis, a zebrafish line expressing exogenous scn1a, and performed EEG analysis on larval optic tecta at 4 day post-fertilization. Finally, we used an in vitro promoter analysis to study whether the genetic motif containing rs7587026 influences promoter activity. Hippocampal SCN1A expression differed by rs7587026 genotype (Kruskal-Wallis test P = 0.004). Individuals homozygous for the minor allele showed significantly increased expression compared to those homozygous for the major allele (Dunn's test P = 0.003), and to heterozygotes (Dunn's test P = 0.035). No statistically significant differences in hippocampal neuronal cell loss were observed between the three genotypes. Among 597 healthy participants, individuals homozygous for the minor allele at rs7587026 displayed significantly reduced mean hippocampal volume compared to major allele homozygotes (Cohen's D = - 0.28, P = 0.02), and to heterozygotes (Cohen's D = - 0.36, P = 0.009). Compared to wild type, scn1lab-overexpressing zebrafish larvae exhibited more frequent spontaneous seizures [one-way ANOVA F(4,54) = 6.95 (P < 0.001)]. The number of EEG discharges correlated with the level of scn1lab overexpression [one-way ANOVA F(4,15) = 10.75 (P < 0.001]. Finally, we showed that a 50 bp promoter motif containing rs7587026 exerts a strong regulatory role on SCN1A expression, though we could not directly link this to rs7587026 itself. Our results develop the mechanistic link between rs7587026 and mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures. Furthermore, we propose that quantitative precision may be important when increasing SCN1A expression in current strategies aiming to treat seizures in conditions involving SCN1A haploinsufficiency, such as Dravet syndrome
Identification of GSK-3 as a potential therapeutic entry point for epilepsy
In view of the clinical need for new antiseizure drugs (ASDs) with novel modes of action, we used a zebrafish seizure model to screen the anticonvulsant activity of medicinal plants used by traditional healers in the Congo for the treatment of epilepsy, and identified a crude plant extract that inhibited pentylenetetrazol (PTZ)-induced seizures in zebrafish larvae. Zebrafish bioassay-guided fractionation of this anticonvulsant Fabaceae species, Indigofera arrecta, identified indirubin, a compound with known inhibitory activity of glycogen synthase kinase (GSK)-3, as the bioactive component. Indirubin, as well as the more potent and selective GSK-3 inhibitor 6-bromoindirubin-3'-oxime (BIO-acetoxime) were tested in zebrafish and rodent seizure assays. Both compounds revealed anticonvulsant activity in PTZ-treated zebrafish larvae, with electroencephalographic recordings revealing reduction of epileptiform discharges. Both indirubin and BIO-acetoxime also showed anticonvulsant activity in the pilocarpine rat model for limbic seizures and in the 6-Hz refractory seizure mouse model. Most interestingly, BIO-acetoxime also exhibited anticonvulsant actions in 6-Hz fully kindled mice. Our findings thus provide the first evidence for anticonvulsant activity of GSK-3 inhibition, thereby implicating GSK-3 as a potential therapeutic entry point for epilepsy. Our results also support the use of zebrafish bioassay-guided fractionation of antiepileptic medicinal plant extracts as an effective strategy for the discovery of new ASDs with novel mechanisms of action
N-Benzyl-(2,5-dioxopyrrolidin-1-yl)propanamide (AS-1) with Hybrid Structure as a Candidate for a Broad-Spectrum Antiepileptic Drug
In our recent studies, we identified compound N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide (AS-1) as a broad-spectrum hybrid anticonvulsant which showed potent protection across the most important animal acute seizure models such as the maximal electroshock (MES) test, the subcutaneous pentylenetetrazole (s.c. PTZ) test, and the 6-Hz (32 mA) test in mice. Therefore, AS-1 may be recognized as a candidate for new anticonvulsant effective in different types of human epilepsy with a favorable safety margin profile determined in the rotarod test in mice. In the aim of further pharmacological evaluation of AS-1, in the current study, we examined its activity in the 6-Hz (44 mA) test, which is known as the model of drug-resistant epilepsy. Furthermore, we determined also the antiseizure activity in the kindling model of epilepsy induced by repeated injection of pentylenetetrazole (PTZ) in mice. As a result, AS-1 revealed relatively potent protection in the 6-Hz (44 mA) test, as well as delayed the progression of kindling induced by repeated injection of PTZ in mice at doses of 15 mg/kg, 30 mg/kg, and 60 mg/kg. Importantly, the isobolographic analysis showed that a combination of AS-1 and valproic acid (VPA) at the fixed ratio of 1:1 displayed a supra-additive (synergistic) interaction against PTZ-induced seizures in mice. Thus, AS-1 may be potentially used in an add-on therapy with VPA. Moreover, incubation of zebrafish larvae with AS-1 substantially decreased the number, cumulative but not the mean duration of epileptiform-like events in electroencephalographic assay. Finally, the in vitro ADME-Tox studies revealed that AS-1 is characterized by a very good permeability in the parallel artificial membrane permeability assay test, excellent metabolic stability on human liver microsomes (HLMs), no significant influence on CYP3A4/CYP2D6 activity, and moderate inhibition of CYP2C9 in a concentration of 10 μM, as well as no hepatotoxic properties in HepG2 cells (concentration of 10 μM)
Anticonvulsant Activity of Pterostilbene in Zebrafish and Mouse Acute Seizure Tests
Pterostilbene (PTE), a natural dimethylated analog of resveratrol, possesses numerous health-beneficial properties. The ability of PTE to cross the blood–brain barrier raised the possibility that this compound may modulate central nervous system functions, including seizure activity. The aim of our study was to investigate the activity of PTE in the larval zebrafish pentylenetetrazole (PTZ) seizure assay and three acute seizure tests in mice, i.e., in the maximal electroshock seizure threshold (MEST), 6 Hz-induced psychomotor seizure threshold and intravenous (iv) PTZ tests. Additionally, potential antidepressant activity of PTE was estimated in the forced swim test in mice. The chimney test was used to determine the influence of PTE on motor coordination in mice, while its influence on neuromuscular strength was assessed in the grip strength test in mice. Locomotor activity was determined to verify the results from the forced swim test. PTE revealed an evident anticonvulsant effect both in zebrafish larvae (10 µM; 2 h-incubation) and mice (at doses of 100 and 200 mg/kg, intraperitoneally) but it did not exhibit antidepressant potential in the forced swim test. Furthermore, it did not cause any statistically significant changes in motor coordination, neuromuscular strength and locomotor activity in mice. In conclusion, our present findings demonstrate for the first time the anticonvulsant potential of PTE. The aforementioned results suggest that it might be employed in epilepsy treatment, however, further precise studies are required to verify its activity in other experimental seizure and epilepsy models and its precise mechanism of action should be determined
PLoS ONE
Over the past decade, zebrafish (Danio rerio) have emerged as an attractive model for in vivo drug discovery. In this study,
we explore the suitability of zebrafish larvae to rapidly evaluate the anti-inflammatory activity of natural products (NPs) and
medicinal plants used in traditional medicine for the treatment of inflammatory disorders. First, we optimized a zebrafish
assay for leukocyte migration. Inflammation was induced in four days post-fertilization (dpf) zebrafish larvae by tail
transection and co-incubation with bacterial lipopolysaccharides (LPS), resulting in a robust recruitment of leukocytes to the
zone of injury. Migrating zebrafish leukocytes were detected in situ by myeloperoxidase (MPO) staining, and antiinflammatory
activity was semi-quantitatively scored using a standardized scale of relative leukocyte migration (RLM).
Pharmacological validation of this optimized assay was performed with a panel of anti-inflammatory drugs, demonstrating a
concentration-responsive inhibition of leukocyte migration for both steroidal and non-steroidal anti-inflammatory drugs
(SAIDs and NSAIDs). Subsequently, we evaluated the bioactivity of structurally diverse NPs with well-documented antiinflammatory
properties. Finally, we further used this zebrafish-based assay to quantify the anti-inflammatory activity in the
aqueous and methanolic extracts of several medicinal plants. Our results indicate the suitability of this LPS-enhanced
leukocyte migration assay in zebrafish larvae as a front-line screening platform in NP discovery, including for the bioassayguided
isolation of anti-inflammatory secondary metabolites from complex NP extracts.Cuencavolumen 8; número 1
- …