446 research outputs found
Glycaemic control in people with diabetes following acute myocardial infarction
Diabetes is a highly prevalent disease associated with considerable cardiovascular end organ damage and mortality. Despite significant changes to the management of acute myocardial infarction over the last two decades, people with diabetes remain at risk of complications and mortality following a myocardial infarct for a multitude of reasons, including increased coronary atherosclerosis, associated coronary microvascular dysfunction, and diabetic cardiomyopathy. Dysglycaemia causes significant endothelial dysfunction and upregulation of inflammation within the vasculature and epigenetic changes mean that these deleterious effects may persist despite subsequent efforts to tighten glycaemic control. Whilst clinical guidelines advocate for the avoidance of both hyper- and hypoglcyaemia in the peri-infarct period, the evidence base is lacking, and currently there is no consensus on the benefits of glycaemic control beyond this period. Glycaemic variability contributes to the glycaemic milieu and may have prognostic importance following myocardial infarct. The use of continuous glucose monitoring means that glucose trends and parameters can now be captured and interrogated, and its use, along with newer medicines, may provide novel opportunities for intervention after myocardial infarction in people with diabetes
Enrolment of families with overweight children into a program aimed at reducing childhood obesity with and without a weight criterion: a natural experiment
© The Author(s). 2019 This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.BACKGROUND: Difficulties engaging families with overweight children to enrol into programs aimed at reducing childhood obesity have been well documented. During the implementation of the Parenting, Eating and Activity for Child Health Program (PEACH™) over a large geographical area (Queensland (QLD), Australia), a natural experiment developed. This experiment provided an opportunity to observe if there was a difference in enrolment for families with overweight children with a weight criterion (referred to as the period with a Targeted Eligibility Criterion (TEC)) compared to when a weight criterion was removed (the period referred to as Universal Eligibility Criterion (UEC)). We also examined the eligibility criterion’s relationship with attendance, parental concern about their child’s weight, estimation of overweight and obesity from parent-reported data. METHODS: A secondary analysis of baseline data from 926 overweight/obese children from 817 families enrolled in PEACH™ QLD was performed. Analyses were adjusted to control for the presence of clustered data. Bivariate statistics were performed using Pearson chi-square test with the second-order Rao-Scott correction, and Mann–Whitney U-test for non-parametric continuous variables. Generalized Estimating Equations (GEE) explored the association between weight status-based eligibility criteria and enrolment of overweight children. GEE were adjusted for sex, age and socioeconomic index and stratified for weight category. RESULTS: Compared to obese children, overweight children were almost twice as likely to be enrolled when the program did not have weight status-based eligibility criteria (during UEC period) (OR = 1.90 (CI 95% 1.35–2.68, p < 0.001)). Parents of overweight children enrolled during the UEC period were more likely to regard their child’s weight as less of a concern than during the TEC period (UEC 67% vs. TEC 45%, p = 0.036). Children whose parent-reported data underestimated their weight category were more likely to be enrolled while the program did not have weight-related eligibility criteria OR = 2.27 (CI 1.38–3.70, p < 0.01). Program session attendance did not appear to be impacted by the changes in eligibility criteria. CONCLUSIONS: The omission of weight criteria for healthy lifestyle programs is a consideration for health professionals and decision-makers alike when encouraging the enrolment of children who are overweight into healthy lifestyle programs
Consistent dynamical and stellar masses with potential light IMF in massive quiescent galaxies at using velocity dispersions measurements with MOSFIRE
We present the velocity dispersion measurements of four massive
quiescent galaxies at based on deep H and
Kband spectra using the Keck/MOSFIRE near-infrared spectrograph. We find
high velocity dispersions of order km/s based on strong
Balmer absorption lines and combine these with size measurements based on
HST/WFC3 F160W imaging to infer dynamical masses. The velocity dispersion are
broadly consistent with the high stellar masses and small sizes. Together with
evidence for quiescent stellar populations, the spectra confirm the existence
of a population of massive galaxies that formed rapidly and quenched in the
early universe . Investigating the evolution at constant velocity
dispersion between and , we find a large increase in
effective radius dex and in dynamical-to-stellar mass ratio
of 0.33$\pm0.08$ dex, with low expected
contribution from dark matter. The dynamical masses for our $z\sim3.5$ sample
are consistent with the stellar masses for a Chabrier initial mass function
(IMF), with the ratio =
-0.130.10 dex suggesting an IMF lighter than Salpeter may be common for
massive quiescent galaxies at . This is surprising in light of the
Salpeter or heavier IMFs found for high velocity dispersion galaxies at
and cores of present-day ellipticals, which these galaxies are thought
to evolve into. Future imaging and spectroscopic observations with resolved
kinematics using the upcoming James Webb Space Telescope could rule out
potential systematics from rotation, and confirm these results.Comment: 11 pages, 3 figures. Accepted to ApJ Letter
The FENIKS Survey: Spectroscopic Confirmation of Massive Quiescent Galaxies at z ~ 3-5
The measured ages of massive, quiescent galaxies at imply that
massive galaxies quench as early as . While the number of
spectroscopic confirmations of quiescent galaxies at has increased over
the years, there are only a handful at . We report spectroscopic
redshifts of one secure () and two tentative (, )
massive () quiescent galaxies with 11 hours of
Keck/MOSFIRE -band observations. Our candidates were selected from the
FENIKS survey, which uses deep Gemini/Flamingos-2 imaging optimized
for increased sensitivity to the characteristic red colors of galaxies at with strong Balmer/4000 \AA\ breaks. The rest-frame and
colors of 3/4 quiescent candidates are consistent with Gyr old stellar
populations. This places these galaxies as the oldest objects at these
redshifts, and challenges the notion that quiescent galaxies at are all
recently-quenched, "post-starburst'' galaxies. Our spectroscopy shows that the
other quiescent-galaxy candidate is a broad-line AGN () with strong,
redshifted +[O III] emission with a velocity offset km/s,
indicative of a powerful outflow. The star-formation history of our highest
redshift candidate suggests that its progenitor was already in place by , reaching 10 by . These observations
reveal the limit of what is possible with deep near-infrared photometry and
targeted spectroscopy from the ground and demonstrate that secure spectroscopic
confirmation of quiescent galaxies at is only feasible with JWST.Comment: 20 pages, 11 figures, submitted to Ap
Bias-driven conductance increase with length in porphyrin tapes
A key goal in molecular electronics has been to find molecules that facilitate efficient charge transport over long distances. Normally molecular wires become less conductive with increasing length. Here we report a series of fused porphyrin oligomers for which the conductance increases substantially with length by > 10-fold at a bias of 0.7 V. This exceptional behavior can be attributed to the rapid decrease of the HOMO-LUMO gap with the length of fused porphyrins. In contrast, for butadiyne-linked porphyrin oligomers with moderate inter-ring coupling, a normal conductance decrease with length is found for all bias voltages explored (± 1 V), although the attenuation factor (β) decreases from ca. 2 nm-1 at low bias to < 1 nm-1 at 0.9 V, highlighting that β is not an intrinsic molecular property. Further theoretical analysis using density functional theory underlines the role of inter-site coupling and indicates that this large increase in conductance with length at increasing voltages can be generalized to other molecular oligomers
- …