714 research outputs found

    The new CSB/SJU Honors Program

    Get PDF
    The new CSB/SJU Honors Program is a four-year, five course interdisciplinary general education program aimed intentionally at academically high-achieving students who have wide-ranging intellectual interests and a desire to put their theoretical learning into practice. In this academically challenging program, students develop interdisciplinary agility, research skills, and leadership abilities. It is a selective program, admitting only 60 students per cohort through a competitive application process. Students will move through the Honors curriculum with their class cohort and earn credit toward general education requirements. We provide information about the redesigned Honors Program including an explanation of the rationale for the changes, an overview of the vision and academic courses, and an explanation of how to get involved and teach courses for it

    Temporal dynamics of surface ocean carbonate chemistry inresponse to natural and simulated upwelling events duringthe 2017 coastal El Niño near Callao, Peru

    Get PDF
    Oxygen minimum zones (OMZs) are characterized by enhanced carbon dioxide (CO2) levels and low pH and are being further acidified by uptake of anthropogenic atmospheric CO2. With ongoing intensification and expansion of OMZs due to global warming, carbonate chemistry conditions may become more variable and extreme, particularly in the eastern boundary upwelling systems. In austral summer (February–April) 2017, a large-scale mesocosm experiment was conducted in the coastal upwelling area off Callao (Peru) to investigate the impacts of ongoing ocean deoxygenation on biogeochemical processes, coinciding with a rare coastal El Niño event. Here we report on the temporal dynamics of carbonate chemistry in the mesocosms and surrounding Pacific waters over a continuous period of 50 d with high-temporal-resolution observations (every second day). The mesocosm experiment simulated an upwelling event in the mesocosms by addition of nitrogen (N)-deficient and CO2-enriched OMZ water. Surface water in the mesocosms was acidified by the OMZ water addition, with pHT lowered by 0.1–0.2 and pCO2 elevated to above 900 µatm. Thereafter, surface pCO2 quickly dropped to near or below the atmospheric level (405.22 µatm in 2017; Dlugokencky and Tans, 2021; NOAA/Global Monitoring Laboratory (GML)) mainly due to enhanced phytoplankton production with rapid CO2 consumption. Further observations revealed that the dominance of the dinoflagellate Akashiwo sanguinea and contamination of bird excrements played important roles in the dynamics of carbonate chemistry in the mesocosms. Compared to the simulated upwelling, natural upwelling events in the surrounding Pacific waters occurred more frequently with sea-to-air CO2 fluxes of 4.2–14.0 mmol C m−2 d−1. The positive CO2 fluxes indicated our site was a local CO2 source during our study, which may have been impacted by the coastal El Niño. However, our observations of dissolved inorganic carbon (DIC) drawdown in the mesocosms suggest that CO2 fluxes to the atmosphere can be largely dampened by biological processes. Overall, our study characterized carbonate chemistry in nearshore Pacific waters that are rarely sampled in such a temporal resolution and hence provided unique insights into the CO2 dynamics during a rare coastal El Niño event

    From Pixels to Planning: Large-scale Mapping of Urban Morphology and Population Distribution with the World Settlement Footprint 3D

    Get PDF
    Urban morphology and human population distribution are two interrelated aspects of our urbanization that play a critical role in shaping the sustainability, resilience and liveability of cities. In recent years, the advent of global datasets with 3D information derived from Earth Observation (EO) technologies has revolutionised our ability to study and analyse these two aspects of urbanisation, providing information that is essential for designing cities that can accommodate the needs of their residents while minimizing their environmental impact. One such dataset is the novel World Settlement Footprint 3D (WSF3D) produced by the German Aerospace Center (DLR). The WSF3D was the first global dataset providing detailed information of the fraction, area, average height and total volume of buildings, at unprecedented spatial resolution, coverage and consistency. Since its development, researchers from different organizations (e.g. WorldBank, United Nations, WorldPop) have employed the dataset as input data for large-scale studies in urban morphology and population distribution, with a level of detail that was previously impossible. In this paper we present a selection of WSF3D-driven applications with the objective of demonstrating how the new data can be used to support urban planning and management. First, the WSF3D has been employed to demonstrate how the four layers of the dataset can be used to determine a building's functional use, and how this information can be leveraged to improve large-scale models of population distribution at large-scale. Thereafter, the WSF3D has been used to determine the relationships among building height/volume, population density and income, which can provide insights into the efficient use of space (e.g. crowding vs layering) on the one hand, and shed light into infrastructure disparities and variations, on the other. With that being said, due to the global nature of the WSF3D dataset, the previous analyses were conducted from local to regional scales, which can also help identify opportunities for interventions that can be replicated across different locations. Overall, with the results of this research, the authors aim to provide planners and policy-makers with valuable insights into usability of the globally available WSF3D dataset. By demonstrating its potential as reliable and robust input data, this study seeks not only to empower evidence-based decision-making, but also to advocate for the widespread adoption of geospatial layers in the implementation of strategies towards sustainable development strategies of the built environment

    From Pixels to Planning: Large-scale Mapping of Urban Morphology and Population Distribution with the World Settlement Footprint 3D

    Get PDF
    Urban morphology and human population distribution are two interrelated aspects of our urbanization that play a critical role in shaping the sustainability, resilience and liveability of cities. In recent years, the advent of global datasets with 3D information derived from Earth Observation (EO) technologies has revolutionised our ability to study and analyse these two aspects of urbanisation, providing information that iS essential for designing cities that can accommodate the needs of their residents while minimizing their environmental impact. One such dataset is the novel World Settlement Footprint 3D (WSF3D) produced by the German Aerospace Center (DLR). The WSF3D was the first global dataset providing detailed information of the fraction, area, average height and total volume of buildings, at unprecedented spatial resolution, coverage and consistency. Since its development, researchers from different organizations (e.g. WorldBank, United Nations, WorldPop) have employed the dataset as input data for large-scale studies in urban morphology and population distribution, with a level of detail that was previously impossible. In this paper we present a selection of WSF3D-driven applications with the objective of demonstrating how the new data can be used to support urban planning and management. First, the WSF3D has been employed to demonstrate how the four layers of the dataset can be used to determine a building's functional use, and how this information can be leveraged to improve large-scale models of population distribution at large-scale. Thereafter, the WSF3D has been used to determine the relationships among building height/volume, population density and income, which can provide insights into the efficient use of space (e.g. crowding vs layering) on the one hand, and shed light into infrastructure disparities and variations, on the other. With that being said, due to the global nature of the WSF3D dataset, the previous analyses were conducted from local to regional scales, which can also help identify opportunities for interventions that can be replicated across different locations. Overall, with the results of this research, the authors aim to provide planners and policy-makers with valuable insights into usability of the globally available WSF3D dataset. By demonstrating its potential as reliable and robust input data, this study seeks not only to empower evidence-based decision-making, but also to advocate for the widespread adoption of geospatial layers in the implementation of strategies towards sustainable development strategies of the built environment

    Antimicrobial resistance point-of-care testing for gonorrhoea treatment regimens: cost-effectiveness and impact on ceftriaxone use of five hypothetical strategies compared with standard care in England sexual health clinics.

    Get PDF
    BackgroundWidespread ceftriaxone antimicrobial resistance (AMR) threatens Neisseria gonorrhoeae (NG) treatment, with few alternatives available. AMR point-of-care tests (AMR POCT) may enable alternative treatments, including abandoned regimens, sparing ceftriaxone use. We assessed cost-effectiveness of five hypothetical AMR POCT strategies: A-C included a second antibiotic alongside ceftriaxone; and D and E consisted of a single antibiotic alternative, compared with standard care (SC: ceftriaxone and azithromycin).AimAssess costs and effectiveness of AMR POCT strategies that optimise NG treatment and reduce ceftriaxone use.MethodsThe five AMR POCT treatment strategies were compared using a decision tree model simulating 38,870 NG-diagnosed England sexual health clinic (SHC) attendees; A micro-costing approach, representing cost to the SHC (for 2015/16), was employed. Primary outcomes were: total costs; percentage of patients given optimal treatment (regimens curing NG, without AMR); percentage of patients given non-ceftriaxone optimal treatment; cost-effectiveness (cost per optimal treatment gained).ResultsAll strategies cost more than SC. Strategy B (azithromycin and ciprofloxacin (azithromycin preferred); dual therapy) avoided most suboptimal treatments (n = 48) but cost most to implement (GBP 4,093,844 (EUR 5,474,656)). Strategy D (azithromycin AMR POCT; monotherapy) was most cost-effective for both cost per optimal treatments gained (GBP 414.67 (EUR 554.53)) and per ceftriaxone-sparing treatment (GBP 11.29 (EUR 15.09)) but with treatment failures (n = 34) and suboptimal treatments (n = 706).ConclusionsAMR POCT may enable improved antibiotic stewardship, but require net health system investment. A small reduction in test cost would enable monotherapy AMR POCT strategies to be cost-saving

    Ecological divergence of a mesocosm in an eastern boundary upwelling system assessed with multi-marker environmental DNA metabarcoding

    Get PDF
    Eastern boundary upwelling systems (EBUS) contribute a disproportionate fraction of the global fish catch relative to their size and are especially susceptible to global environmental change. Here we present the evolution of communities over 50 days in an in situ mesocosm 6 km offshore of Callao, Peru and in the nearby unenclosed coastal Pacific Ocean. The communities were monitored using multi-marker environmental DNA (eDNA) metabarcoding and flow cytometry. DNA extracted from weekly water samples were subjected to amplicon sequencing for four genetic loci: 1) the V1-V2 region of the 16S rRNA gene, for photosynthetic eukaryotes (via their chloroplasts) and bacteria; 2) the V9 region of the 18S rRNA gene for exploration of eukaryotes but targeting phytoplankton; 3) cytochrome oxidase I (COI), for exploration of eukaryotic taxa but targeting invertebrates, and 4) the 12S rRNA gene, targeting vertebrates. The multi-marker approach showed a divergence of communities (from microbes to fish) between the mesocosm and the unenclosed ocean. Together with the environmental information, the genetic data furthered our mechanistic understanding of the processes that are shaping EBUS communities in a changing ocean. The unenclosed ocean experienced significant variability over the course of the 50-day experiment with temporal shifts in community composition but remained dominated by organisms that are characteristic of high nutrient, upwelling conditions (e.g. diatoms, copepods, anchovies). A large directional change was found in the mesocosm community. The mesocosm community that developed was characteristic of upwelling regions when upwelling relaxes and waters stratify (e.g. dinoflagellates, nanoflagellates). The selection of dinoflagellates under the warm (coastal El Ni&ntilde;o) and stratified conditions in the mesocosm may be an indication of how EBUS will respond under the global environmental changes (i.e. continued global warming) forecast by the IPCC.</p

    World Settlement Footprint 3D - A first three-dimensional survey of the global building stock

    Get PDF
    Settlements, and in particular cities, are at the center of key future challenges related to global change and sustainable development. Widely used indicators to assess the efficiency and sustainability of settlement development are the compactness and density of the built-up area. However, at global scale, a temporally consistent and spatially detailed survey of the distribution and concentration of the building stock – meaning the total area and volume of buildings within a defined spatial unit or settlement, commonly referred to as building density – does not yet exist. To fill this data and knowledge gap, an approach was developed to map key characteristics of the world’s building stock in a so far unprecedented level of spatial detail for every single settlement on our planet. The resulting World Settlement Footprint 3D dataset quantifies the fraction, total area, average height, and total volume of buildings for a measuring grid with 90 m cell size. The World Settlement Footprint 3D is generated using a modified version of the World Settlement Footprint human settlements mask derived from Sentinel-1 and Sentinel-2 satellite imagery at 10 m spatial resolution, in combination with 12 m digital elevation data and radar imagery collected by the TanDEM-X mission. The underlying, automated processing framework includes three basic workflows: one estimating the mean building height based on an analysis of height differences along potential building edges, a second module determining the building fraction and total building area within each 90 m cell, and a third part combining the height information and building area in order to determine the average height and total built-up volume at 90 m gridding. Optionally, a simple 3D building model (level of detail 1) can be generated for regions where data on the building footprints is available. A comprehensive validation campaign based on 3D building models obtained for 19 regions (~86,000 km2) and street-view samples indicating the number of floors for >130,000 individual buildings in 15 additional cities documents that the novel World Settlement Footprint 3D data provides valuable and, for the first time, globally consistent information on key characteristics of the building stock in both, large urban agglomerations as well as small-scale rural settlements. Thus, the new dataset represents a promising baseline dataset for a wide range of previously impossible environmental, socioeconomic, and climatological studies worldwide

    Large-scale 3D Modelling of the Built Environment - Joint Analysis of TanDEM-X, Sentinel-2 and Open Street Map Data

    Get PDF
    Continental to global scale mapping of the human settlement extent based on earth observation satellite data has made considerable progress. Nevertheless, the current approaches only provide a two-dimensional representation of the built environment. Therewith, a full characterization is restricted in terms of the urban morphology and built-up density, which can only be gained by a detailed examination of the vertical settlement extent. This paper introduces a methodology for the extraction of three-dimensional (3D) information on human settlements by analyzing the digital elevation and radar intensity data collected by the German TanDEM-X satellite mission in combination with multispectral Sentinel-2 imagery and data from the Open Street Map initiative and the Global Urban Footprint human settlement mask. The first module of the underlying processor generates a normalized digital surface model from the TanDEM-X digital elevation model for all regions marked as a built-up area by the Global Urban Footprint. The second module generates a building mask based on a joint processing of Open Street Map, TanDEM-X/TerraSAR-X radar images, the calculated normalized digital surface model and Sentinel-2 imagery. Finally, a third module allocates the local relative heights of the normalized digital surface model to the building structures provided by the building mask. The outcome of the procedure is a 3D map of the built environment showing the estimated local height for all identified vertical building structures at 12 m spatial resolution. The results of a first validation campaign based on reference data collected for the seven cities of Amsterdam (NL), Indianapolis (US), Kigali (RW), Munich (DE), New York (US), Vienna (AT), and Washington (US) indicate the potential of the proposed methodology to accurately estimate the distribution of building heights within the built-up area
    • …
    corecore