25 research outputs found

    Natalizumab treatment shows low cumulative probabilities of confirmed disability worsening to EDSS milestones in the long-term setting.

    Get PDF
    Abstract Background Though the Expanded Disability Status Scale (EDSS) is commonly used to assess disability level in relapsing-remitting multiple sclerosis (RRMS), the criteria defining disability progression are used for patients with a wide range of baseline levels of disability in relatively short-term trials. As a result, not all EDSS changes carry the same weight in terms of future disability, and treatment benefits such as decreased risk of reaching particular disability milestones may not be reliably captured. The objectives of this analysis are to assess the probability of confirmed disability worsening to specific EDSS milestones (i.e., EDSS scores ≥3.0, ≥4.0, or ≥6.0) at 288 weeks in the Tysabri Observational Program (TOP) and to examine the impact of relapses occurring during natalizumab therapy in TOP patients who had received natalizumab for ≥24 months. Methods TOP is an ongoing, open-label, observational, prospective study of patients with RRMS in clinical practice. Enrolled patients were naive to natalizumab at treatment initiation or had received ≤3 doses at the time of enrollment. Intravenous natalizumab (300 mg) infusions were given every 4 weeks, and the EDSS was assessed at baseline and every 24 weeks during treatment. Results Of the 4161 patients enrolled in TOP with follow-up of at least 24 months, 3253 patients with available baseline EDSS scores had continued natalizumab treatment and 908 had discontinued (5.4% due to a reported lack of efficacy and 16.4% for other reasons) at the 24-month time point. Those who discontinued due to lack of efficacy had higher baseline EDSS scores (median 4.5 vs. 3.5), higher on-treatment relapse rates (0.82 vs. 0.23), and higher cumulative probabilities of EDSS worsening (16% vs. 9%) at 24 months than those completing therapy. Among 24-month completers, after approximately 5.5 years of natalizumab treatment, the cumulative probabilities of confirmed EDSS worsening by 1.0 and 2.0 points were 18.5% and 7.9%, respectively (24-week confirmation), and 13.5% and 5.3%, respectively (48-week confirmation). The risks of 24- and 48-week confirmed EDSS worsening were significantly higher in patients with on-treatment relapses than in those without relapses. An analysis of time to specific EDSS milestones showed that the probabilities of 48-week confirmed transition from EDSS scores of 0.0–2.0 to ≥3.0, 2.0–3.0 to ≥4.0, and 4.0–5.0 to ≥6.0 at week 288 in TOP were 11.1%, 11.8%, and 9.5%, respectively, with lower probabilities observed among patients without on-treatment relapses (8.1%, 8.4%, and 5.7%, respectively). Conclusions In TOP patients with a median (range) baseline EDSS score of 3.5 (0.0–9.5) who completed 24 months of natalizumab treatment, the rate of 48-week confirmed disability worsening events was below 15%; after approximately 5.5 years of natalizumab treatment, 86.5% and 94.7% of patients did not have EDSS score increases of ≥1.0 or ≥2.0 points, respectively. The presence of relapses was associated with higher rates of overall disability worsening. These results were confirmed by assessing transition to EDSS milestones. Lower rates of overall 48-week confirmed EDSS worsening and of transitioning from EDSS score 4.0–5.0 to ≥6.0 in the absence of relapses suggest that relapses remain a significant driver of disability worsening and that on-treatment relapses in natalizumab-treated patients are of prognostic importance

    Low Dissolved Oxygen in an Estuarine Channel (San Joaquin River, California): Mechanisms and Models Based on Long-term Time Series

    No full text
    The Stockton Deep Water Ship Channel, a stretch of the tidal San Joaquin River, is frequently subject to low dissolved oxygen conditions and annually violates regional water quality objectives. Underlying mechanisms are examined here using the long-term water quality data, and the efficacy of possible solutions using time-series regression models. Hypoxia is most common during June-September, immediately downstream of where the river enters the Ship Channel. At the annual scale, ammonium loading from the Regional Wastewater Control Facility has the largest identifiable effect on year-to-year variability. The longer-term upward trend in ammonium loads, which have been increasing over 10% per year, also corresponds to a longer-term downward trend in dissolved oxygen during summer. At the monthly scale, river flow, loading of wastewater ammonium and river phytoplankton, Ship Channel temperature, and Ship Channel phytoplankton are all significant in determining hypoxia. Over the recent historical range (1983–2003), wastewater ammonium and river phytoplankton have played a similar role in the monthly variability of the dissolved oxygen deficit, but river discharge has the strongest effect. Model scenarios imply that control of either river phytoplankton or wastewater ammonium load alone would be insufficient to eliminate hypoxia. Both must be strongly reduced, or reduction of one must be combined with increases in net discharge to the Ship Channel. Model scenarios imply that preventing discharge down Old River with a barrier markedly reduces hypoxia in the Ship Channel. With the Old River barrier in place, unimpaired or full natural flow at Vernalis would have led to about the same frequency of hypoxia that has occurred with actual flows since the early 1980s

    Low Dissolved Oxygen in an Estuarine Channel (San Joaquin River, California): Mechanisms and Models Based on Long-term Time Series

    No full text
    The Stockton Deep Water Ship Channel, a stretch of the tidal San Joaquin River, is frequently subject to low dissolved oxygen conditions and annually violates regional water quality objectives. Underlying mechanisms are examined here using the long-term water quality data, and the efficacy of possible solutions using time-series regression models. Hypoxia is most common during June-September, immediately downstream of where the river enters the Ship Channel. At the annual scale, ammonium loading from the Regional Wastewater Control Facility has the largest identifiable effect on year-to-year variability. The longer-term upward trend in ammonium loads, which have been increasing over 10% per year, also corresponds to a longer-term downward trend in dissolved oxygen during summer. At the monthly scale, river flow, loading of wastewater ammonium and river phytoplankton, Ship Channel temperature, and Ship Channel phytoplankton are all significant in determining hypoxia. Over the recent historical range (1983–2003), wastewater ammonium and river phytoplankton have played a similar role in the monthly variability of the dissolved oxygen deficit, but river discharge has the strongest effect. Model scenarios imply that control of either river phytoplankton or wastewater ammonium load alone would be insufficient to eliminate hypoxia. Both must be strongly reduced, or reduction of one must be combined with increases in net discharge to the Ship Channel. Model scenarios imply that preventing discharge down Old River with a barrier markedly reduces hypoxia in the Ship Channel. With the Old River barrier in place, unimpaired or full natural flow at Vernalis would have led to about the same frequency of hypoxia that has occurred with actual flows since the early 1980s.</p

    Transparency tube provides reliable water-quality measurements

    Get PDF
    We examined the efficacy of using transparency-tube measurements to estimate turbidity, total suspended solids (TSS) and particulate nitrogen and phosphorus concentrations in several California waterways. Just as lowering a black-and-white disk (Secchi disk) into a lake provides a convenient way to measure its water clarity, a transparency tube offers a practical alternative for measuring water clarity and suspended solids concentrations in California streams and waterways. While transparency relationships with turbidity and TSS are strongest within a given sampling location, these relationships are relatively robust across a wide range of water bodies displaying contrasting conditions. However, transparency-tube measurements appear to have limited value in predicting particulate nutrient concentrations, even at a given sampling site. The low cost, ease of use and excellent repeatability of measurement make the transparency tube a potentially valuable tool for anyone interested in monitoring water quality, including farmers, ranchers, citizen volunteer groups, schools and local governments seeking to get involved in watershed monitoring programs

    Transparency tube provides reliable water-quality measurements

    No full text
    corecore