17 research outputs found

    Circumstellar interaction models for the early bolometric light curve of SN 2023ixf

    Full text link
    SNe II show growing evidence of interaction with CSM surrounding their progenitor stars as a consequence of enhanced mass loss during the last years of the progenitor's life. We present an analysis of the progenitor mass-loss history of SN2023ixf, a nearby SN II showing signs of interaction. We calculate the early-time bolometric light curve (LC) for SN2023ixf based on the integration of the observed flux covering UV, optical and NIR bands, and black-body extrapolations for the unobserved flux. Our calculations spot the sudden increase to maximum luminosity and temperature, in addition to the subsequent fall, displaying an evident peak. This is the first time that this phase can be precisely estimated for a SN II showing interesting characteristics as: 1) slope changes during the rise to maximum luminosity; and 2) a very sharp peak with a maximum luminosity of ∼\sim3×\times1045^{45}erg s−1^{-1}. We use the bolometric LC of SN2023ixf to test the calibrations of bolometric corrections against colours from the literature. In addition, we include SN2023ixf into some of the available calibrations to extend their use to earlier epochs. Comparison of the observed bolometric LC to SN II explosion models with CSM interaction suggests a progenitor mass-loss rate of 3×\times10−3M⊙^{-3}M_{\odot}yr−1^{-1} confined to 12000R⊙R_{\odot} and a wind acceleration parameter of β\beta=5. This model reproduces the early bolometric LC, expansion velocities, and the epoch of disappearance of interacting lines in the spectra. This model indicates that the wind was launched ∼\sim80yr before the explosion. If the effect of the wind acceleration is not taken into account, the enhanced wind must have developed over the final months to years prior to the SN, which may not be consistent with the lack of outburst detection in pre-explosion images over the last ∼\sim20yr before explosion.Comment: Submitted to A&

    The progenitor of SN 2023ixf from hydrodynamical modelling

    Full text link
    Context: Supernova (SN) 2023ixf is among the most nearby Type II SNe in the last decades. As such, there is a wealth of observational data of both the event itself and of the associated object identified in pre-explosion images. This allows to perform a variety of studies that aim at determining the SN properties and the nature of the putative progenitor star. Modelling of the light curve is a powerful method to derive physical properties independently of direct progenitor analyses. Aims: To investigate the physical nature of SN 2023ixf based on hydrodynamical modelling of its bolometric light curve and expansion velocities during the complete photospheric phase. Methods: A grid of one dimensional explosions was calculated for evolved stars of different masses. We derived properties of SN 2023ixf and its progenitor by comparing our models with the observations. Results: The observations are well reproduced by the explosion of a star with zero age main sequence mass of f MZAMS=12M⊙M_\mathrm{ZAMS} = 12 M_\odot , an explosion energy of 1.2×10511.2 \times 10^{51} erg, and a nickel production of 0.05M . This indicates that SN 2023ixf was a normal event. Our modelling suggests a limit of MZAMS<15M⊙M_\mathrm{ZAMS} < 15 M_\odot and therefore favours the low mass range among the results from pre-explosion observations.Comment: Accepted - A&A Lette

    Type II supernovae from the Carnegie Supernova Project-I: I. Bolometric light curves of 74 SNe II using uBgVriYJH photometry

    Get PDF
    The present study is the first of a series of three papers where we characterise the type II supernovae (SNe II) from the Carnegie Supernova Project-I to understand their diversity in terms of progenitor and explosion properties. In this first paper, we present bolometric light curves of 74 SNe II. We outline our methodology to calculate the bolometric luminosity, which consists of the integration of the observed fluxes in numerous photometric bands (uBgVriYJH) and black-body (BB) extrapolations to account for the unobserved flux at shorter and longer wavelengths. BB fits were performed using all available broadband data except when line blanketing effects appeared. Photometric bands bluer than r that are affected by line blanketing were removed from the fit, which makes near-infrared (NIR) observations highly important to estimate reliable BB extrapolations to the infrared. BB fits without NIR data produce notably different bolometric light curves, and therefore different estimates of SN II progenitor and explosion properties when data are modelled. We present two methods to address the absence of NIR observations: (a) colour-colour relationships from which NIR magnitudes can be estimated using optical colours, and (b) new prescriptions for bolometric corrections as a function of observed SN II colours. Using our 74 SN II bolometric light curves, we provide a full characterisation of their properties based on several observed parameters. We measured magnitudes at different epochs, as well as durations and decline rates of different phases of the evolution. An analysis of the light-curve parameter distributions was performed, finding a wide range and a continuous sequence of observed parameters which is consistent with previous analyses using optical light curves.The work of the Carnegie Supernova Project was supported by the National Science Foundation under grants AST-0306969, AST-0607438, AST-1008343, AST-1613426, AST-1613472, and AST-1613455. L. M. acknowledges support from a CONICET fellowship. L. M. and M. O. acknowledge support from UNRN PI2018 40B885 grant. M. H. acknowledges support from the Hagler Institute of Advanced Study at Texas A&M University. S. G. G. acknowledges support by FCT under Project CRISP PTDC/FIS-AST-31546/2017 and Project No. UIDB/00099/2020. M. S. is supported by grants from the VILLUM FONDEN (grant number 28021) and the Independent Research Fund Denmark (IRFD; 8021-00170B). F. F. acknowledges support from the National Agency for Research and Development (ANID) grants: BASAL Center of Mathematical Modelling AFB-170001, Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC12009, awarded to the Millennium Institute of Astrophysics, and FONDECYT Regular #1200710. L. G. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (MICIU) under the 2019 Ramón y Cajal program RYC2019-027683 and from the Spanish MICIU project PID2020-115253GA-I00. P.H. acknowledges the support by National Science Foundation (NSF) grant AST-1715133

    Type II supernovae from the Carnegie Supernova Project-I. II. Physical parameter distributions from hydrodynamical modelling

    Get PDF
    Linking supernovae to their progenitors is a powerful method for furthering our understanding of the physical origin of their observed differences, while at the same time testing stellar evolution theory. In this second study of a series of three papers where we characterise SNe II to understand their diversity, we derive progenitor properties (initial and ejecta masses, and radius), explosion energy, 56^{56}Ni mass, and its degree of mixing within the ejecta for a large sample of SNe II. This dataset was obtained by the Carnegie Supernova Project-I and is characterised by a high cadence of their optical and NIR light curves and optical spectra that were homogeneously observed and processed. A large grid of hydrodynamical models and a fitting procedure based on MCMC methods were used to fit the bolometric light curve and the evolution of the photospheric velocity of 53 SNe II. We infer ejecta masses between 7.9 and 14.8 M⊙M_{\odot}, explosion energies between 0.15 and 1.40 foe, and 56^{56}Ni masses between 0.006 and 0.069 M⊙M_{\odot}. We define a subset of 24~SNe (the `gold sample') with well-sampled bolometric light curves and expansion velocities for which we consider the results more robust. Most SNe~II in the gold sample (∼\sim88%) are found with ejecta masses in the range of ∼\sim8-10 M⊙M_{\odot}, coming from low zero-age main-sequence masses (9-12 M⊙M_{\odot}). The modelling of the initial-mass distribution of the gold sample gives an upper mass limit of 21.3−0.4+3.8^{+3.8}_{-0.4} M⊙M_{\odot} and a much steeper distribution than that for a Salpeter massive-star IMF. This IMF incompatibility is due to the large number of low-mass progenitors found -- when assuming standard stellar evolution. This may imply that high-mass progenitors lose more mass during their lives than predicted. However, a deeper analysis of all stellar evolution assumptions is required to test this hypothesis.Comment: Accepted for publication in Astronomy & Astrophysic

    Type II supernovae from the Carnegie Supernova Project-I. I. Bolometric light curves of 74 SNe II using uBgVriYJH photometry

    Get PDF
    The present study is the first of a series of three papers where we characterise the type II supernovae (SNe~II) from the Carnegie Supernova Project-I to understand their diversity in terms of progenitor and explosion properties. In this first paper, we present bolometric light curves of 74 SNe~II. We outline our methodology to calculate the bolometric luminosity, which consists of the integration of the observed fluxes in numerous photometric bands (uBgVriYJHuBgVriYJH) and black-body (BB) extrapolations to account for the unobserved flux at shorter and longer wavelengths. BB fits were performed using all available broadband data except when line blanketing effects appeared. Photometric bands bluer than rr that are affected by line blanketing were removed from the fit, which makes near-infrared (NIR) observations highly important to estimate reliable BB extrapolations to the infrared. BB fits without NIR data produce notably different bolometric light curves, and therefore different estimates of SN~II progenitor and explosion properties when data are modelled. We present two methods to address the absence of NIR observations: (a) colour-colour relationships from which NIR magnitudes can be estimated using optical colours, and (b) new prescriptions for bolometric corrections as a function of observed SN~II colours. Using our 74 SN~II bolometric light curves, we provide a full characterisation of their properties based on several observed parameters. We measured magnitudes at different epochs, as well as durations and decline rates of different phases of the evolution. An analysis of the light-curve parameter distributions was performed, finding a wide range and a continuous sequence of observed parameters which is consistent with previous analyses using optical light curves.Comment: Accepted for publication in A&

    Type II supernovae from the Carnegie Supernova Project-I. I. Bolometric light curves of 74 SNe II using uBgVriYJH photometry

    Get PDF
    The present study is the first of a series of three papers where we characterise the type II supernovae (SNe~II) from the Carnegie Supernova Project-I to understand their diversity in terms of progenitor and explosion properties. In this first paper, we present bolometric light curves of 74 SNe~II. We outline our methodology to calculate the bolometric luminosity, which consists of the integration of the observed fluxes in numerous photometric bands (uBgVriYJHuBgVriYJH) and black-body (BB) extrapolations to account for the unobserved flux at shorter and longer wavelengths. BB fits were performed using all available broadband data except when line blanketing effects appeared. Photometric bands bluer than rr that are affected by line blanketing were removed from the fit, which makes near-infrared (NIR) observations highly important to estimate reliable BB extrapolations to the infrared. BB fits without NIR data produce notably different bolometric light curves, and therefore different estimates of SN~II progenitor and explosion properties when data are modelled. We present two methods to address the absence of NIR observations: (a) colour-colour relationships from which NIR magnitudes can be estimated using optical colours, and (b) new prescriptions for bolometric corrections as a function of observed SN~II colours. Using our 74 SN~II bolometric light curves, we provide a full characterisation of their properties based on several observed parameters. We measured magnitudes at different epochs, as well as durations and decline rates of different phases of the evolution. An analysis of the light-curve parameter distributions was performed, finding a wide range and a continuous sequence of observed parameters which is consistent with previous analyses using optical light curves...

    SN 2021gno: a Calcium-rich transient with double-peaked light curves

    Full text link
    We present extensive ultraviolet (UV) and optical photometric and optical spectroscopic follow-up of supernova (SN)~2021gno by the "Precision Observations of Infant Supernova Explosions" (POISE) project, starting less than two days after the explosion. Given its intermediate luminosity, fast photometric evolution, and quick transition to the nebular phase with spectra dominated by [Ca~II] lines, SN~2021gno belongs to the small family of Calcium-rich transients. Moreover, it shows double-peaked light curves, a phenomenon shared with only four other Calcium-rich events. The projected distance from the center of the host galaxy is not as large as other objects in this family. The initial optical light-curve peaks coincide with a very quick decline of the UV flux, indicating a fast initial cooling phase. Through hydrodynamical modelling of the bolometric light curve and line velocity evolution, we found that the observations are compatible with the explosion of a highly-stripped massive star with an ejecta mass of 0.8 M⊙0.8\,M_\odot and a 56^{56}Ni mass of 0.024 M⊙0.024~M_{\odot}. The initial cooling phase (first light curve peak) is explained by the presence of an extended circumstellar material comprising ∼\sim10−2 M⊙10^{-2}\,M_{\odot} with an extension of 1100 R⊙1100\,R_{\odot}. We discuss if hydrogen features are present in both maximum-light and nebular spectra, and its implications in terms of the proposed progenitor scenarios for Calcium-rich transients.Comment: 21 pages, 13 figures, accepted for publication in MNRA

    The double-peaked Type Ic supernova 2019cad: another SN 2005bf-like object

    Get PDF
    We present the photometric and spectroscopic evolution of supernova (SN) 2019cad during the first similar to 100 d from explosion. Based on the light-curve morphology, we find that SN 2019cad resembles the double-peaked Type Ib/c SN 2005bf and the Type Ic PTF11mnb. Unlike those two objects, SN 2019cad also shows the initial peak in the redder bands. Inspection of the g-band light curve indicates the initial peak is reached in similar to 8 d, while the r-band peak occurred similar to 15 d post-explosion. A second and more prominent peak is reached in all bands at similar to 45 d past explosion, followed by a fast decline from similar to 60 d. During the first 30 d, the spectra of SN 2019cad show the typical features of a Type Ic SN, however, after 40 d, a blue continuum with prominent lines of Si II lambda 6355 and C II lambda 6580 is observed again. Comparing the bolometric light curve to hydrodynamical models, we find that SN 2019cad is consistent with a pre-SN mass of 11 M-circle dot, and an explosion energy of 3.5 x 10(51) erg. The light-curve morphology can be reproduced either by a double-peaked Ni-56 distribution with an external component of 0.041 M-circle dot, and an internal component of 0.3 M-circle dot or a double-peaked Ni-56 distribution plus magnetar model (P similar to 11 ms and B similar to 26 x 10(14) G). If SN 2019cad were to suffer from significant host reddening (which cannot be ruled out), the Ni-56 model would require extreme values, while the magnetar model would still be feasible

    SN 2013ai: A Link between Hydrogen-rich and Hydrogen-poor Core-collapse Supernovae

    Get PDF
    We present a study of the optical and near-infrared (NIR) spectra of SN 2013ai along with its light curves. These data range from discovery until 380 days after explosion. SN 2013ai is a fast declining Type II supernova (SN II) with an unusually long rise time, 18.9 ± 2.7 days in the V-band, and a bright V-band peak absolute magnitude of −18.7 ± 0.06 mag. The spectra are dominated by hydrogen features in the optical and NIR. The spectral features of SN 2013ai are unique in their expansion velocities, which, when compared to large samples of SNe II, are more than 1,000 km s−1 faster at 50 days past explosion. In addition, the long rise time of the light curve more closely resembles SNe IIb rather than SNe II. If SN 2013ai is coeval with a nearby compact cluster, we infer a progenitor zero-age main-sequence mass of ~17 M⊙. After performing light-curve modeling, we find that SN 2013ai could be the result of the explosion of a star with little hydrogen mass, a large amount of synthesized 56Ni, 0.3–0.4 M⊙, and an explosion energy of 2.5–3.0 × 1051 erg. The density structure and expansion velocities of SN 2013ai are similar to those of the prototypical SN IIb, SN 1993J. However, SN 2013ai shows no strong helium features in the optical, likely due to the presence of a dense core that prevents the majority of γ-rays from escaping to excite helium. Our analysis suggests that SN 2013ai could be a link between SNe II and stripped-envelope SNe

    SN 2021gno: a calcium-rich transient with double-peaked light curves

    Get PDF
    We present extensive ultraviolet (UV) and optical photometric and optical spectroscopic follow-up of supernova (SN) 2021gno by the 'Precision Observations of Infant Supernova Explosions' (POISE) project, starting less than 2 d after the explosion. Given its intermediate luminosity, fast photometric evolution, and quick transition to the nebular phase with spectra dominated by [Ca ii] lines, SN 2021gno belongs to the small family of Calcium-rich transients. Moreover, it shows double-peaked light curves, a phenomenon shared with only four other Calcium-rich events. The projected distance from the centre of the host galaxy is not as large as other objects in this family. The initial optical light-curve peaks coincide with a very quick decline of the UV flux, indicating a fast initial cooling phase. Through hydrodynamical modelling of the bolometric light curve and line velocity evolution, we found that the observations are compatible with the explosion of a highly stripped massive star with an ejecta mass of and a 56Ni mass of 0.024 M⊙. The initial cooling phase (first light-curve peak) is explained by the presence of an extended circumstellar material comprising ∼ with an extension of. We discuss if hydrogen features are present in both maximum-light and nebular spectra, and their implications in terms of the proposed progenitor scenarios for Calcium-rich transients
    corecore