395 research outputs found

    Detection of relic gravitational waves in the CMB: Prospects for CMBPol mission

    Full text link
    Detection of relic gravitational waves, through their imprint in the cosmic microwave background radiation, is one of the most important tasks for the planned CMBPol mission. In the simplest viable theoretical models the gravitational wave background is characterized by two parameters, the tensor-to-scalar ratio rr and the tensor spectral index ntn_t. In this paper, we analyze the potential joint constraints on these two parameters, rr and ntn_t, using the potential observations of the CMBPol mission, which is expected to detect the relic gravitational waves if r0.001r\gtrsim0.001. The influence of the contaminations, including cosmic weak lensing, various foreground emissions, and systematical errors, is discussed.Comment: 26 pages, 19 figures, 4 tables; JCAP in pres

    Ultra High Energy Cosmology with POLARBEAR

    Full text link
    Observations of the temperature anisotropy of the Cosmic Microwave Background (CMB) lend support to an inflationary origin of the universe, yet no direct evidence verifying inflation exists. Many current experiments are focussing on the CMB's polarization anisotropy, specifically its curl component (called "B-mode" polarization), which remains undetected. The inflationary paradigm predicts the existence of a primordial gravitational wave background that imprints a unique B-mode signature on the CMB's polarization at large angular scales. The CMB B-mode signal also encodes gravitational lensing information at smaller angular scales, bearing the imprint of cosmological large scale structures (LSS) which in turn may elucidate the properties of cosmological neutrinos. The quest for detection of these signals; each of which is orders of magnitude smaller than the CMB temperature anisotropy signal, has motivated the development of background-limited detectors with precise control of systematic effects. The POLARBEAR experiment is designed to perform a deep search for the signature of gravitational waves from inflation and to characterize lensing of the CMB by LSS. POLARBEAR is a 3.5 meter ground-based telescope with 3.8 arcminute angular resolution at 150 GHz. At the heart of the POLARBEAR receiver is an array featuring 1274 antenna-coupled superconducting transition edge sensor (TES) bolometers cooled to 0.25 Kelvin. POLARBEAR is designed to reach a tensor-to-scalar ratio of 0.025 after two years of observation -- more than an order of magnitude improvement over the current best results, which would test physics at energies near the GUT scale. POLARBEAR had an engineering run in the Inyo Mountains of Eastern California in 2010 and will begin observations in the Atacama Desert in Chile in 2011.Comment: 8 pages, 6 figures, DPF 2011 conference proceeding

    Internal delensing of cosmic microwave background polarization B-Modes with the POLARBEAR experiment

    Get PDF
    International audienceUsing only cosmic microwave background polarization data from the polarbear experiment, we measure B-mode polarization delensing on subdegree scales at more than 5σ significance. We achieve a 14% B-mode power variance reduction, the highest to date for internal delensing, and improve this result to 22% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial B-mode experiments

    The bolometric focal plane array of the Polarbear CMB experiment

    Full text link
    The Polarbear Cosmic Microwave Background (CMB) polarization experiment is currently observing from the Atacama Desert in Northern Chile. It will characterize the expected B-mode polarization due to gravitational lensing of the CMB, and search for the possible B-mode signature of inflationary gravitational waves. Its 250 mK focal plane detector array consists of 1,274 polarization-sensitive antenna-coupled bolometers, each with an associated lithographed band-defining filter. Each detector's planar antenna structure is coupled to the telescope's optical system through a contacting dielectric lenslet, an architecture unique in current CMB experiments. We present the initial characterization of this focal plane

    Measurement of the cosmic microwave background polarization lensing power spectrum from two years of POLARBEAR data

    Get PDF
    We present a measurement of the gravitational lensing deflection power spectrum reconstructed with two seasons of cosmic microwave background polarization data from the POLARBEAR experiment. Observations were taken at 150 GHz from 2012 to 2014 and surveyed three patches of sky totaling 30 square degrees. We test the consistency of the lensing spectrum with a cold dark matter cosmology and reject the no-lensing hypothesis at a confidence of 10.9σ, including statistical and systematic uncertainties. We observe a value of AL = 1.33 ± 0.32 (statistical) ±0.02 (systematic) ±0.07 (foreground) using all polarization lensing estimators, which corresponds to a 24% accurate measurement of the lensing amplitude. Compared to the analysis of the first- year data, we have improved the breadth of both the suite of null tests and the error terms included in the estimation of systematic contamination

    Development and characterization of the readout system for POLARBEAR-2

    Full text link
    POLARBEAR-2 is a next-generation receiver for precision measurements of the polarization of the cosmic microwave background (Cosmic Microwave Background (CMB)). Scheduled to deploy in early 2015, it will observe alongside the existing POLARBEAR-1 receiver, on a new telescope in the Simons Array on Cerro Toco in the Atacama desert of Chile. For increased sensitivity, it will feature a larger area focal plane, with a total of 7,588 polarization sensitive antenna-coupled Transition Edge Sensor (TES) bolometers, with a design sensitivity of 4.1 uKrt(s). The focal plane will be cooled to 250 milliKelvin, and the bolometers will be read-out with 40x frequency domain multiplexing, with 36 optical bolometers on a single SQUID amplifier, along with 2 dark bolometers and 2 calibration resistors. To increase the multiplexing factor from 8x for POLARBEAR-1 to 40x for POLARBEAR-2 requires additional bandwidth for SQUID readout and well-defined frequency channel spacing. Extending to these higher frequencies requires new components and design for the LC filters which define channel spacing. The LC filters are cold resonant circuits with an inductor and capacitor in series with each bolometer, and stray inductance in the wiring and equivalent series resistance from the capacitors can affect bolometer operation. We present results from characterizing these new readout components. Integration of the readout system is being done first on a small scale, to ensure that the readout system does not affect bolometer sensitivity or stability, and to validate the overall system before expansion into the full receiver. We present the status of readout integration, and the initial results and status of components for the full array.Comment: Presented at SPIE Astronomical Telescopes and Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. Published in Proceedings of SPIE Volume 915

    Polarization angle accuracy for future CMB experiments. The COSMOCal project and its prototype in the 1mm band

    Full text link
    The Cosmic Microwave Background (CMB) radiation offers a unique window into the early Universe, facilitating precise examinations of fundamental cosmological theories. However, the quest for detecting B-modes in the CMB, predicted by theoretical models of inflation, faces substantial challenges in terms of calibration and foreground modeling. The COSMOCal (COsmic Survey of Millimeter wavelengths Objects for CMB experiments Calibration) project aims at enhancing the accuracy of the absolute calibration of the polarization angle ψ\psi of current and future CMB experiments. The concept includes the build of a very well known artificial source emitting in the frequency range [20-350] GHz that would act as an absolute calibrator for several polarization facilities on Earth. A feasibility study to place the artificial source in geostationary orbit, in the far field for all the telescopes on Earth, is ongoing. In the meanwhile ongoing hardware work is dedicated to build a prototype to test the technology, the precision and the stability of the polarization recovering in the 1 mm band (220-300 GHz). High-resolution experiments as the NIKA2 camera at the IRAM 30m telescope will be deployed for such use. Once carefully calibrated (Δψ\Delta\psi < 0.1 degrees) it will be used to observe astrophysical sources such as the Crab nebula, which is the best candidate in the sky for the absolute calibration of CMB experiments.Comment: to appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Science

    Phenotypic plasticity of nest-mate recognition cues in formica exsecta ants

    Get PDF
    It is well established that many ant species have evolved qualitatively distinct species-specific chemical profile that are stable overlarge geographical distances. Within these species profiles quantitative variations in the chemical profile allows distinct colony-specific odours to arise (chemotypes) that are shared by all colony members. This help maintains social cohesion, includingdefence of their colonies against all intruders, including con-specifics. How these colony -level chemotypes are maintainedamong nest-mates has long been debated. The two main theories are; each ant is able to biochemically adjust its chemical profileto‘match’that of its nest-mates and or the queen, or all nest-mates share their individually generated chemical profile viatrophollaxis resulting in an average nest-mate profile. This‘mixing’idea is better known as theGestaltmodel. Unfortunately,it has been very difficult to experimentally test these two ideas in a single experimental design. However, it is now possible usingthe antFormica exsectabecause the compounds used in nest-mate recognition compounds are known. We demonstrate thatworkers adjust their profile to‘match’the dominant chemical profile within that colony, hence maintaining the colony-specificchemotype and indicates that a‘gestalt’mechanism, i.e. profile mixing, plays no or only a minor role
    corecore