44 research outputs found

    Complex Propagation Patterns Characterize Human Cortical Activity during Slow-Wave Sleep

    Get PDF
    Cortical electrical activity during nonrapid eye movement (non-REM) sleep is dominated by slow-wave activity (SWA). At larger spatial scales (similar to 2-30 cm), investigated by scalp EEG recordings, SWA has been shown to propagate globally over wide cortical regions as traveling waves, which has been proposed to serve as a temporal framework for neural plasticity. However, whether SWA dynamics at finer spatial scales also reflects the orderly propagation has not previously been investigated in humans. To reveal the local, finer spatial scale (similar to 1-6 cm) patterns of SWA propagation during non-REM sleep, electrocorticographic (ECoG) recordings were conducted from subdurally implanted electrode grids and a nonlinear correlation technique [mutual information (MI)] was implemented. MI analysis revealed spatial maps of correlations between cortical areas demonstrating SWA propagation directions, speed, and association strength. Highest correlations, indicating significant coupling, were detected during the initial positive-going deflection of slow waves. SWA propagated predominantly between adjacent cortical areas, albeit spatial noncontinuities were also frequently observed. MI analysis further uncovered significant convergence and divergence patterns. Areas receiving the most convergent activity were similar to those with high divergence rate, while reciprocal and circular propagation of SWA was also frequent. We hypothesize that SWA is characterized by distinct attributes depending on the spatial scale observed. At larger spatial scales, the orderly SWA propagation dominates; at the finer scale of the ECoG recordings, non-REM sleep is characterized by complex SWA propagation patterns

    Low and high beta band activity in the primary sensorimotor cortex is diminished by ipsilateral subthalamic stimulation in Parkinsonian patients [Abstract]

    Get PDF
    Objective: We analyzed how change of the low and high beta power in the primary sensorimotor cortex relates to different levels of subthalamic stimulation; we hypothesized that it is a suitable biomarker for a closed-loop system. Background: Beta power in the motor system is shown to indicate the kinetic state in Parkinson’s disease. Method: We recruited 20 Parkinsonian patients. Bradykinesia of the most affected hand was measured first with Kinesia motion sensor system (Great Lakes NeuroTechnologies) in medication withdrawal; and four levels of contralateral stimulation (0: OFF, 1-3: decreasing symptoms to ON state) was individually selected. We performed 64-channel electroencephalography (EEG) measurement during a resting state with the four levels of stimulation settings mentioned above. We stimulated the usually used contacts during the whole study, and the ipsilateral stimulation remained ON and unchanged. The 2 minutes long EEG segments were cleaned from DBS artifacts by in-house algorithms. We performed line-noise removal; eye blinks and muscle artifacts were eliminated using ICA analyses. We calculated spectral power at the low (13-20Hz) and high (21-30Hz) beta frequency bands at the sensorimotor cortical region both sides using a beamformer algorithm called the Dynamic Imaging of Coherent Sources. We used repeated measures ANOVA to compare power values in the different locations and stimulation conditions in the two frequency bands. The Medical Research Council in Hungary provided ethical approval. (080958/2015/OTIG). Results: Resting state low- and high-frequency beta power in the primary sensorimotor cortex gradually decreased with the elevation of the ipsilateral stimulation level. In the continuously stimulated contralateral hemisphere, beta power remained at the baseline level. The beta power values measured in the two hemispheres were significantly different in stimulation levels 0-2 but not in level 3 (p < 0.05) both in the low- and high-frequency bands. Conclusion: The change of beta power in the primary sensorimotor cortex during STN-DBS is strictly ipsilateral, and depends on the level of stimulation. Beta power in the sensorimotor cortex could be a potential biomarker for closed-loop DBS. The support of Medtronic Inc. for this project is gratefully acknowledged

    Chronic migraine plus medication overuse headache: two entities or not?

    Get PDF
    Chronic migraine (CM) represents migraine natural evolution from its episodic form. It is realized through a chronicization phase that may require months or years and varies from patient to patient. The transition to more frequent attacks pattern is influenced by lifestyle, life events, comorbid conditions and personal genetic terrain, and it often leads to acute drugs overuse. Medication overuse headache (MOH) may complicate every type of headache and all the drugs employed for headache treatment can cause MOH. The first step in the management of CM complicated by medication overuse must be the withdrawal of the overused drugs and a detoxification treatment. The goal is not only to detoxify the patient and stop the chronic headache but also to improve responsiveness to acute or prophylactic drugs. Different methods have been suggested: gradual or abrupt withdrawal; home treatment, hospitalization, or a day-hospital setting; re-prophylaxes performed immediately or at the end of the wash-out period. Up to now, only topiramate and local injection of onabotulinumtoxinA have shown efficacy as therapeutic agents for re-prophylaxis after detoxification in patients with CM with and without medication overuse. Although the two treatments showed similar efficacy, onabotulinumtoxinA is associated with a better adverse events profile. Recently, the Phase III Research Evaluating Migraine Prophylaxis Therapy (PREEMPT) clinical program proved that patients with CM, even those with MOH, are the ones most likely to benefit from onabotulinumtoxinA treatment. Furthermore, it provided an injection paradigm that can be used as a guide for a correct administration of onabotulinumtoxinA

    A comparison of Filipino and Filipino-North American student\u27s personality traits as measured by the panukat ng ugali at pagkatao

    No full text
    This study determined which Filipino personality traits, as measured by the 24 subscales of the PUP, differed between Filipino college students (males=12, females=19) and Filipino-North Americans studying in the Philippines (males=13, females=15). Gender effects and interaction effects of cultural background and gender also were studied. Results of this study indicated that (1) Filipinos were more courteous (Pagkamagalang), more shy (pagkamahiyain), more sensitive (Pagkamaramdamin), more tolerant (Pagkapikon), and more conforming (Pagkasunud-sunuran) than were Filipino-North Americans (2) Females were more ambitious (Ambisyon) and more aggressive (pagkapalaaway) than males (3) Filipino females were more aggressive then were Filipino-North American females, but Filipino-North American males were just as aggressive as were Filipino males. The effect of cultural background on personality traits is generally confined to the Filipino traits of hiya, smooth interpersonal relations and close family ties. The effect of gender, on personality traits can be attributed to the rigidity or flexibility of roles in a society. Lastly, interaction effects of cultural background and gender is also generally confined to hiya and personalism

    Enhanced CDC of B cell chronic lymphocytic leukemia cells mediated by rituximab combined with a novel anti-complement factor H antibody

    No full text
    <div><p>Rituximab therapy for B cell chronic lymphocytic leukemia (B-CLL) has met with mixed success. Among several factors to which resistance can be attributed is failure to activate complement dependent cytotoxicity (CDC) due to protective complement regulatory proteins, including the soluble regulator complement factor H (CFH). We hypothesized that rituximab killing of non-responsive B-CLL cells could be augmented by a novel human monoclonal antibody against CFH. The B cells from 11 patients with B-CLL were tested <i>ex vivo</i> in CDC assays with combinations of CFH monoclonal antibody, rituximab, and a negative control antibody. CDC of rituximab non-responsive malignant B cells from CLL patients could in some cases be augmented by the CFH monoclonal antibody. Antibody-mediated cytotoxicity of cells was dependent upon functional complement. In one case where B-CLL cells were refractory to CDC by the combination of rituximab plus CFH monoclonal antibody, additionally neutralizing the membrane complement regulatory protein CD59 allowed CDC to occur. Inhibiting CDC regulatory proteins such as CFH holds promise for overcoming resistance to rituximab therapy in B-CLL.</p></div
    corecore