14 research outputs found

    Phospholipase A<sub>2</sub>‑Induced Degradation and Release from Lipid-Containing Polymersomes

    No full text
    Hybrid vesicles, comprising blends of amphiphilic block copolymers and phospholipids, have attracted significant attention recently because of their unique combination of chemical and physical properties. We report a method to make unilamellar hybrid vesicles with diameters of 100 nm by mixing polybutadiene-<i>block</i>-poly­(ethylene oxide) and phosphocholine lipids using a combination of solvent inversion and sonication. We show that homogeneous hybrid vesicles are formed when one component is a minor fraction. At compositions with balanced mass fractions, separate populations of similarly sized pure liposomes and hybrid vesicles are indicated. We investigate the release kinetics of calcein encapsulated in the lumen as hybrid large and giant unilamellar vesicles (LUVs and GUVs) of different compositions are exposed to phospholipase A<sub>2</sub> (PLA<sub>2</sub>). PLA<sub>2</sub> hydrolyzes lipids, which leads to dissolution of lipid domains and provides a trigger for the release of calcein as pores are formed. We demonstrate that depending on the polymer mole fraction, block copolymers can either protect or boost the rate of lipid degradation and thereby the release rate from nanoscale hybrid vesicles. Strong indications of lipid phase separation into nanoscale domains in LUVs are observed. Most importantly, hybrid GUV with lipids in the fluid phase release calcein slowly as lipids in the liquid-disordered phase do not phase-separate, but they show the fastest release of all blends as LUVs. This indicates phase separation on the nanoscale in contrast to on the microscale, but it also indicates retained high mobility of lipids between the nanoscale domains, which is absent for lipids in the gel phase. Our results demonstrate several ways in which nanoscale hybrid vesicles can and should be optimized for PLA<sub>2</sub>-triggered release of water-soluble compounds

    Stealth Nanoparticles Grafted with Dense Polymer Brushes Display Adsorption of Serum Protein Investigated by Isothermal Titration Calorimetry

    No full text
    Core–shell nanoparticles receive much attention for their current and potential applications in life sciences. Commonly, a dense shell of hydrated polymer, a polymer brush, is grafted to improve colloidal stability of functional nanoparticles and to prevent protein adsorption, aggregation, cell recognition, and uptake. Until recently, it was widely assumed that a polymer brush shell indeed prevents strong association of proteins and that this leads to their superior “stealth” properties in vitro and in vivo. We show using <i>T</i>-dependent isothermal titration calorimetry on well-characterized monodisperse superparamagnetic iron oxide nanoparticles with controlled dense stealth polymer brush shells that “stealth” core–shell nanoparticles display significant attractive exothermic and enthalpic interactions with serum proteins, despite having excellent colloidal stability and negligible nonspecific cell uptake. This observation is at room temperature shown to depend only weakly on variation of iron oxide core diameter and type of grafted stealth polymer: poly­(ethylene glycol), poly­(ethyl oxazoline), poly­(isopropyl oxazoline), and poly­(<i>N</i>-isopropyl acrylamide). Polymer brush shells with a critical solution temperature close to body temperature showed a strong temperature dependence in their interactions with proteins with a significant increase in protein binding energy with increased temperature. The stoichiometry of interaction is estimated to be near 1:1 for PEGylated nanoparticles and up to 10:1 for larger thermoresponsive nanoparticles, whereas the average free energy of interaction is enthalpically driven and comparable to a weak hydrogen bond

    Complete Exchange of the Hydrophobic Dispersant Shell on Monodisperse Superparamagnetic Iron Oxide Nanoparticles

    No full text
    High-temperature synthesized monodisperse superparamagnetic iron oxide nanoparticles are obtained with a strongly bound ligand shell of oleic acid and its decomposition products. Most applications require a stable presentation of a defined surface chemistry; therefore, the native shell has to be completely exchanged for dispersants with irreversible affinity to the nanoparticle surface. We evaluate by attenuated total reflectance−Fourier transform infrared spectroscopy (ATR−FTIR) and thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) the limitations of commonly used approaches. A mechanism and multiple exchange scheme that attains the goal of complete and irreversible ligand replacement on monodisperse nanoparticles of various sizes is presented. The obtained hydrophobic nanoparticles are ideally suited for magnetically controlled drug delivery and membrane applications and for the investigation of fundamental interfacial properties of ultrasmall core–shell architectures

    Selective (Bio)Functionalization of Solid-State Nanopores

    No full text
    We present a method to selectively (bio)­functionalize nanoscale features with the same materials chemistry. It was successfully combined with nanosphere lithography to fabricate and functionalize solid-state nanopores with PEG-brushes, supported lipid membranes, and functional proteins over large areas. The method is inexpensive, can be performed without specialized equipment, and can be applied to both topographic and planar surface modification

    Influence of Grafted Block Copolymer Structure on Thermoresponsiveness of Superparamagnetic Core–Shell Nanoparticles

    No full text
    The morphology and topology of thermoresponsive polymers have a strong impact on their responsive properties. Grafting onto spherical particles has been shown to reduce responsiveness and transition temperatures; grafting of block copolymers has shown that switchable or retained wettability of a surface or particle during desolvation of one block can take place. Here, doubly thermoresponsive block copolymers were grafted onto spherical, monodisperse, and superparamagnetic iron oxide nanoparticles to investigate the effect of thermal desolvation on spherical brushes of block copolymers. By inverting the block order, the influence of core proximity on the responsive properties of the individual blocks could be studied as well as their relative influence on the nanoparticle colloidal stability. The inner block was shown to experience a stronger reduction in transition temperature and transition enthalpy compared to the outer block. Still, the outer block also experiences a significant reduction in responsiveness due to the restricted environment in the nanoparticle shell compared to that of the free polymer state. The demonstrated pronounced distance dependence importantly implies the possibility, but also the necessity, to radially tailor polymer hydration transitions for applications such as drug delivery, hyperthermia, and biotechnological separation for which thermally responsive nanoparticles are being developed

    Individually Stabilized, Superparamagnetic Nanoparticles with Controlled Shell and Size Leading to Exceptional Stealth Properties and High Relaxivities

    No full text
    Superparamagnetic iron oxide nanoparticles (SPION) have received immense interest for biomedical applications, with the first clinical application as negative contrast agent in magnetic resonance imaging (MRI). However, the first generation MRI contrast agents with dextran-enwrapped, polydisperse iron oxide nanoparticle clusters are limited to imaging of the liver and spleen; this is related to their poor colloidal stability in biological media and inability to evade clearance by the reticulo­endothelial system. We investigate the qualitatively different performance of a new generation of individually PEG-grafted core–shell SPION in terms of relaxivity and cell uptake and compare them to benchmark iron oxide contrast agents. These PEG-grafted SPION uniquely enable relaxivity measurements in aqueous suspension without aggregation even at 9.4 T magnetic fields due to their extraordinary colloidal stability. This allows for determination of the size-dependent scaling of relaxivity, which is shown to follow a <i>d</i><sup>2</sup> dependence for identical core–shell structures. The here introduced core–shell SPION with ∼15 nm core diameter yield a higher <i>R</i><sub>2</sub> relaxivity than previous clinically used contrast agents as well as previous generations of individually stabilized SPION. The colloidal stability extends to control over evasion of macrophage clearance and stimulated uptake by SPION functionalized with protein ligands, which is a key requirement for targeted MRI

    Evaluation of High-Yield Purification Methods on Monodisperse PEG-Grafted Iron Oxide Nanoparticles

    No full text
    Fundamental research on nanoparticle (NP) interactions and development of next-generation biomedical NP applications relies on synthesis of monodisperse, functional, core–shell nanoparticles free of residual dispersants with truly homogeneous and controlled physical properties. Still, synthesis and purification of e.g. such superparamagnetic iron oxide NPs remain a challenge. Comparing the success of different methods is marred by the sensitivity of analysis methods to the purity of the product. We synthesize monodisperse, oleic acid (OA)-capped, Fe<sub>3</sub>O<sub>4</sub> NPs in the superparamagnetic size range (3–10 nm). Ligand exchange of OA for poly­(ethylene glycol) (PEG) was performed with the PEG irreversibly grafted to the NP surface by a nitrodopamine (NDA) anchor. Four different methods were investigated to remove excess ligands and residual OA: membrane centrifugation, dialysis, size exclusion chromatography, and precipitation combined with magnetic decantation. Infrared spectroscopy and thermogravimetric analysis were used to determine the purity of samples after each purification step. Importantly, only magnetic decantation yielded pure NPs at high yields with sufficient grafting density for biomedical applications (∼1 NDA-PEG­(5 kDa)/nm<sup>2</sup>, irrespective of size). The purified NPs withstand challenging tests such as temperature cycling in serum and long-term storage in biological buffers. Dynamic light scattering, transmission electron microscopy, and small-angle X-ray scattering show stability over at least 4 months also in serum. The successful synthesis and purification route is compatible with any conceivable functionalization for biomedical or biomaterial applications of PEGylated Fe<sub>3</sub>O<sub>4</sub> NPs

    Embedded Plasmonic Nanomenhirs as Location-Specific Biosensors

    No full text
    We introduce a novel optical biosensing platform that exploits the asymmetry of nanostructures embedded in nanocavities, termed nanomenhirs. Upon oblique illumination using plane polarized white light, two plasmonic resonances attributable to the bases and the axes of the nanomenhirs emerge; these are used for location-specific sensing of membrane-binding events. Numerical simulations of the near field distributions confirmed the experimental results. As a proof-of-concept, we present a model biosensing experiment that exploits the dual-sensing capability, the size selectivity offered by the sensor geometry, and the possibility to separately biochemically modify the nanomenhirs and the nanocavities for the specific binding of lipid membrane structures to the nanomenhirs

    Supported Lipopolysaccharide Bilayers

    No full text
    In this report, the formation of supported lipopolysaccharide bilayers (LPS-SLBs) is studied with extracted native and glycoengineered LPS from Escherichia coli (E. coli) and Salmonella enterica sv typhimurium (S. typhimurium) to assemble a platform that allows measurement of LPS membrane structure and the detection of membrane tethered saccharide-protein interactions. We present quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence recovery after photobleaching (FRAP) characterization of LPS-SLBs with different LPS species, having, for example, different molecular weights, that show successful formation of SLBs through vesicle fusion on SiO<sub>2</sub> surfaces with LPS fractions up to 50 wt %. The thickness of the LPS bilayers were investigated with AFM force–distance measurements which showed only a slight thickness increase compared to pure POPC SLBs. The E. coli LPS were chosen to study the saccharide–protein interaction between the Htype II glycan epitope and the Ralstonia solanacearum lectin (RSL). RSL specifically recognizes fucose sugars, which are present in the used Htype II glycan epitope and absent in the epitopes LPS1 and EY2. We show via fluorescence microscopy that the specific, but weak and multivalent interaction can be detected and discriminated on the LPS-SLB platform

    Interaction of Size-Tailored PEGylated Iron Oxide Nanoparticles with Lipid Membranes and Cells

    No full text
    Targeted nanomedicine builds on the concept that nanoparticles can be directed to specific tissues while remaining inert to others organs. Many studies have been performed on the synthesis and cellular interactions of core–shell nanoparticles, in which a functional inorganic core is coated with a biocompatible polymer layer that should reduce nonspecific uptake and cytotoxicity. However, work is lacking that relates structural parameters of the core–shell structure and colloidal properties directly to interactions with cell membranes and further correlates these interactions to cell uptake. We have synthesized monodisperse (SD < 10%), single-crystalline, and superparamagnetic iron oxide nanoparticles (SPION) of different core size (3–8 nm) that are densely grafted with nitrodopamine-poly­(ethylene glycol) (NDA-PEG­(5 kDa)) brushes. We investigated the interactions of the PEGylated SPION with biomimetic membranes and cancer and kidney cells. It is shown that a dense homogeneous PEG shell suppresses membrane interactions and cell uptake but that nanoparticle curvature can influence membrane interactions for similarly grafted nanoparticles. Weak adsorption to anionic lipid membranes is shown to correlate with eukaryote cell uptake and is attributed to double-layer interactions without direct membrane penetration. This attraction is strongly suppressed during physiological conditions and leads to unprecedented low cell uptake and full cell viability when compared to those of traditional dextran-coated SPION. Less curved (larger core) PEGylated SPION show weaker membrane adsorption and lower cell uptake due to effectively denser shells. These results provide a better understanding of design criteria for core–shell nanoparticles in terms of avoiding nonspecific uptake by cells, reducing toxicity, and increasing circulation time
    corecore