36 research outputs found
The influence of vector‐borne disease on human history: socio‐ecological mechanisms
Vector-borne diseases (VBDs) are embedded within complex socio-ecological systems. While research has traditionally focused on the direct effects of VBDs on human morbidity and mortality, it is increasingly clear that their impacts are much more pervasive. VBDs are dynamically linked to feedbacks between environmental conditions, vector ecology, disease burden, and societal responses that drive transmission. As a result, VBDs have had profound influence on human history. Mechanisms include: (1) killing or debilitating large numbers of people, with demographic and population-level impacts; (2) differentially affecting populations based on prior history of disease exposure, immunity, and resistance; (3) being weaponised to promote or justify hierarchies of power, colonialism, racism, classism and sexism; (4) catalysing changes in ideas, institutions, infrastructure, technologies and social practices in efforts to control disease outbreaks; and (5) changing human relationships with the land and environment. We use historical and archaeological evidence interpreted through an ecological lens to illustrate how VBDs have shaped society and culture, focusing on case studies from four pertinent VBDs: plague, malaria, yellow fever and trypanosomiasis. By comparing across diseases, time periods and geographies, we highlight the enormous scope and variety of mechanisms by which VBDs have influenced human history
Racism in organizations: The case of a county public health department
Racism is part of the foundation of U.S. society and institutions, yet few studies in community psychology or organizational studies have examined how racism affects organizations. This paper proposes a conceptual framework of institutional racism, which describes how, in spite of professional standards and ethics, racism functions within organizations to adversely affect the quality of services, the organizational climate, and staff job satisfaction and morale. Grounded in systems theory and organizational empowerment, the framework is based on data that describe how racism was made manifest in a county public health department. The findings highlight the importance of understanding how organizations are influenced by external forces and can negatively affect clients, communities, and their own staff members. © 2007 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55998/1/20149_ftp.pd
Analysis of Xq27-28 linkage in the international consortium for prostate cancer genetics (ICPCG) families.
BACKGROUND: Genetic variants are likely to contribute to a portion of prostate cancer risk. Full elucidation of the genetic etiology of prostate cancer is difficult because of incomplete penetrance and genetic and phenotypic heterogeneity. Current evidence suggests that genetic linkage to prostate cancer has been found on several chromosomes including the X; however, identification of causative genes has been elusive. METHODS: Parametric and non-parametric linkage analyses were performed using 26 microsatellite markers in each of 11 groups of multiple-case prostate cancer families from the International Consortium for Prostate Cancer Genetics (ICPCG). Meta-analyses of the resultant family-specific linkage statistics across the entire 1,323 families and in several predefined subsets were then performed. RESULTS: Meta-analyses of linkage statistics resulted in a maximum parametric heterogeneity lod score (HLOD) of 1.28, and an allele-sharing lod score (LOD) of 2.0 in favor of linkage to Xq27-q28 at 138 cM. In subset analyses, families with average age at onset less than 65 years exhibited a maximum HLOD of 1.8 (at 138 cM) versus a maximum regional HLOD of only 0.32 in families with average age at onset of 65 years or older. Surprisingly, the subset of families with only 2-3 affected men and some evidence of male-to-male transmission of prostate cancer gave the strongest evidence of linkage to the region (HLOD = 3.24, 134 cM). For this subset, the HLOD was slightly increased (HLOD = 3.47 at 134 cM) when families used in the original published report of linkage to Xq27-28 were excluded. CONCLUSIONS: Although there was not strong support for linkage to the Xq27-28 region in the complete set of families, the subset of families with earlier age at onset exhibited more evidence of linkage than families with later onset of disease. A subset of families with 2-3 affected individuals and with some evidence of male to male disease transmission showed stronger linkage signals. Our results suggest that the genetic basis for prostate cancer in our families is much more complex than a single susceptibility locus on the X chromosome, and that future explorations of the Xq27-28 region should focus on the subset of families identified here with the strongest evidence of linkage to this region.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for Pancreatic Cancer
Background Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes. Methods We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided. Results We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P Conclusion Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.Peer reviewe
Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21.
Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88x10 -15), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22x10 -9) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70x10 -8). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 ( NR5A2), chr8q24.21 ( MYC) and chr5p15.33 ( CLPTM1L- TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal ( n = 10) and tumor ( n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7x10 -8). This finding was validated in a second set of paired ( n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5x10 -4-2.0x10 -3). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology
Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer.
In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10-8). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10-14), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10-10), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10-8), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10-8). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene
A risk prediction tool for individuals with a family history of breast, ovarian, or pancreatic cancer: BRCAPANCPRO
Introduction: Identifying families with an underlying inherited cancer predisposition is a major goal of cancer prevention efforts. Mendelian risk models have been developed to better predict the risk associated with a pathogenic variant of developing breast/ovarian cancer (with BRCAPRO) and the risk of developing pancreatic cancer (PANCPRO). Given that pathogenic variants involving BRCA2 and BRCA1 predispose to all three of these cancers, we developed a joint risk model to capture shared susceptibility.
Methods: We expanded the existing framework for PANCPRO and BRCAPRO to jointly model risk of pancreatic, breast, and ovarian cancer and validated this new model, BRCAPANCPRO on three data sets each reflecting the common target populations.
Results: BRCAPANCPRO outperformed the prior BRCAPRO and PANCPRO models and yielded good discrimination for differentiating BRCA1 and BRCA2 carriers from non-carriers (AUCs 0.79, 95% CI: 0.73-0.84 and 0.70, 95% CI: 0.60-0.80) in families seen in high-risk clinics and pancreatic cancer family registries, respectively. In addition, BRCAPANCPRO was reasonably well calibrated for predicting future risk of pancreatic cancer (observed-to-expected (O/E) ratio = 0.81 [0.69, 0.94]).
Discussion: The BRCAPANCPRO model provides improved risk assessment over our previous risk models, particularly for pedigrees with a co-occurrence of pancreatic cancer and breast and/or ovarian cancer