6 research outputs found
Interactions between Natural Populations of Human and Rodent Schistosomes in the Lake Victoria Region of Kenya: A Molecular Epidemiological Approach
One of the world's most prevalent neglected diseases is schistosomiasis, which infects approximately 200 million people worldwide. Schistosoma mansoni is transmitted to humans by skin penetration by free-living larvae that develop in freshwater snails. The origin of this species is East Africa, where it coexists with its sister species, S. rodhaini. Interactions between these species potentially influence their epidemiology, ecology, and evolutionary biology, because they infect the same species of hosts and can hybridize. Over two years, we examined their distribution in Kenya to determine their degree of overlap geographically, within snail hosts, and in the water column as infective stages. Both species were spatially and temporally patchy, although S. mansoni was eight times more common than S. rodhaini. Both species overlap in the time of day they were present in the water column, which increases the potential for the species to coinfect the same host and interbreed. Peak infective time for S. mansoni was midday and dawn and dusk for S. rodhaini. Three snails were coinfected, which was more common than expected by chance. These findings indicate a lack of obvious isolating mechanisms to prevent hybridization, raising the intriguing question of how the two species retain separate identities
Real time correlation-based stereo: algorithm, implementations and applications
This paper describes some of the work on stereo that has been going on at INRIA in the last four years. The work has concentrated on obtaining dense, accurate and reliable range maps of the environment at rates compatible with the real-time constraints of such applications as the navigation of mobile vehicles in man-made or natural environments. The class of algorithms which has been selected among several is the class of algorithms which has been selected among several is the class of correlation-based stereo algorithms because they are the only ones that can produce sufficiently dense range maps with an algoritmic structure which lends itself nicely to fast implementations because of the simplicity of the underlying computation. We describe the various improvements that we have brought to the original idea, including validation and characterization of the quality of the matches, a recursive implementation of the score computation which makes the method independent of the size of the correlation window and a calibration method which does not require the use of a calibration pattern. We then describe two implementations of this algorithm on two very different pieces of hardware. The first implementation is on a board with four digital signal processors designed jointly with Matra MSII. This implementation can produce 64x64 range maps at rate varying between 200 and 400 ms, depending upon the range of disparities. The second implementation is on a board developed by DEC-PRL and can perform the cross-correlation of two 256X256 images in 140 ms. The first implementation has been integrated in the navigation system of the INRIA cart and used to correct for inertial and odometric errors in navigation experiments both indoors and outdoors on road. This is the first application of our correlation-based algorithm which is described in the paper. The second application has been done jointly with people from the french national space agence (CNES) to study the possibility of using stereo on a future planetary rover for the construction of digital elevation maps. We have shown that real time stereo is possible today at low-cost and can be applied in real applications. The algorithm that has been described is not the most sophisticated available but we have made it robust and reliable thanks to a number of improvements. Evan though each of these improvements is not earth-shattering from the pure research point of view, altogether they have allowed us to go beyond a very important threshold. This threshold measures the difference between a program that runs in the laboratory on a few images and one that works continuously for hours on a sequence of stereo pairs and produces results at such rates and of such quality that they can be used to guide a real vehicle or to produce discrete elevation maps. We believe that this threshold has only been reached in a very small number of cases
Real Time Correlation-Based Stereo: Algorithm, Implementations and Applications
This paper describes some of the work on stereo that has been going on at INRIA in the last four years. The work has concentrated on obtaining dense, accurate, and reliable range maps of the environment at rates compatible with the real-time constraints of such applications as the navigation of mobile vehicles in man-made or natural environments. The class of algorithms which has been selected among several is the class of correlation-based stereo algorithms because they are the only ones that can produce sufficiently dense range maps with an algorithmic structure which lends itself nicely to fast implementations because of the simplicity of the underlying computation. We describe the various improvements that we have brought to the original idea, including validation and characterization of the quality of the matches, a recursive implementation of the score computation which makes the method independent of the size of the correlation window, and a calibration method which does not req..
Real time correlation-based stereo: algorithm, implementations and applications
This paper describes some of the work on stereo that has been going on at INRIA in the last four years. The work has concentrated on obtaining dense, accurate and reliable range maps of the environment at rates compatible with the real-time constraints of such applications as the navigation of mobile vehicles in man-made or natural environments. The class of algorithms which has been selected among several is the class of algorithms which has been selected among several is the class of correlation-based stereo algorithms because they are the only ones that can produce sufficiently dense range maps with an algoritmic structure which lends itself nicely to fast implementations because of the simplicity of the underlying computation. We describe the various improvements that we have brought to the original idea, including validation and characterization of the quality of the matches, a recursive implementation of the score computation which makes the method independent of the size of the correlation window and a calibration method which does not require the use of a calibration pattern. We then describe two implementations of this algorithm on two very different pieces of hardware. The first implementation is on a board with four digital signal processors designed jointly with Matra MSII. This implementation can produce 64x64 range maps at rate varying between 200 and 400 ms, depending upon the range of disparities. The second implementation is on a board developed by DEC-PRL and can perform the cross-correlation of two 256X256 images in 140 ms. The first implementation has been integrated in the navigation system of the INRIA cart and used to correct for inertial and odometric errors in navigation experiments both indoors and outdoors on road. This is the first application of our correlation-based algorithm which is described in the paper. The second application has been done jointly with people from the french national space agence (CNES) to study the possibility of using stereo on a future planetary rover for the construction of digital elevation maps. We have shown that real time stereo is possible today at low-cost and can be applied in real applications. The algorithm that has been described is not the most sophisticated available but we have made it robust and reliable thanks to a number of improvements. Evan though each of these improvements is not earth-shattering from the pure research point of view, altogether they have allowed us to go beyond a very important threshold. This threshold measures the difference between a program that runs in the laboratory on a few images and one that works continuously for hours on a sequence of stereo pairs and produces results at such rates and of such quality that they can be used to guide a real vehicle or to produce discrete elevation maps. We believe that this threshold has only been reached in a very small number of cases
pH-operated hybrid silica nanoparticles with multiple H-bond stoppers for colon cancer therapy
International audienceThe transport of anticancer molecules by nanoparticles has shown great promise in terms of bioavailability, concentrating drugs in the tumor area and minimizing drug side effects. Here, we report the high efficiency of pH-operated hybrid silica nanocarriers for colon cancer therapy. These silica nanoparticles carry the drugs which are tightly held by cyanuric acid as a new type of stopper. The latter can be autonomously removed upon acidic medium allowing a direct drug release inside the cancer cells. Importantly, the proof of concept was established by ex vivo experiments using primary cell cultures from patient biopsies