28 research outputs found
Brachial plexus injury mimicking a spinal-cord injury.
Objective High-energy impact to the head, neck, and shoulder can result in cervical spine as well as brachial plexus injuries. Because cervical spine injuries are more common, this tends to be the initial focus for management. We present a case in which the initial magnetic resonance imaging (MRI) was somewhat misleading and a detailed neurological exam lead to the correct diagnosis.Clinical presentation A 19-year-old man presented to the hospital following a shoulder injury during football practice. The patient immediately complained of significant pain in his neck, shoulder, and right arm and the inability to move his right arm. He was stabilized in the field for a presumed cervical-spine injury and transported to the emergency department.Intervention Initial radiographic assessment (C-spine CT, right shoulder x-ray) showed no bony abnormality. MRI of the cervical-spine showed T2 signal change and cord swelling thought to be consistent with a cord contusion. With adequate pain control, a detailed neurological examination was possible and was consistent with an upper brachial plexus avulsion injury that was confirmed by CT myelogram. The patient failed to make significant neurological recovery and he underwent spinal accessory nerve grafting to the suprascapular nerve to restore shoulder abduction and external rotation, while the phrenic nerve was grafted to the musculocutaneous nerve to restore elbow flexion.Conclusion Cervical spinal-cord injuries and brachial plexus injuries can occur by the same high energy mechanisms and can occur simultaneously. As in this case, MRI findings can be misleading and a detailed physical examination is the key to diagnosis. However, this can be difficult in polytrauma patients with upper extremity injuries, head injuries or concomitant spinal-cord injury. Finally, prompt diagnosis and early surgical renerveration have been associated with better long-term recovery with certain types of injury
Upper limb nerve transfer surgery in patients with tetraplegia
IMPORTANCE: Cervical spinal cord injury (SCI) causes devastating loss of upper extremity function and independence. Nerve transfers are a promising approach to reanimate upper limbs; however, there remains a paucity of high-quality evidence supporting a clinical benefit for patients with tetraplegia.
OBJECTIVE: To evaluate the clinical utility of nerve transfers for reanimation of upper limb function in tetraplegia.
DESIGN, SETTING, AND PARTICIPANTS: In this prospective case series, adults with cervical SCI and upper extremity paralysis whose recovery plateaued were enrolled between September 1, 2015, and January 31, 2019. Data analysis was performed from August 2021 to February 2022.
INTERVENTIONS: Nerve transfers to reanimate upper extremity motor function with target reinnervation of elbow extension and hand grasp, pinch, and/or release.
MAIN OUTCOMES AND MEASURES: The primary outcome was motor strength measured by Medical Research Council (MRC) grades 0 to 5. Secondary outcomes included Sollerman Hand Function Test (SHFT); Michigan Hand Outcome Questionnaire (MHQ); Disabilities of Arm, Shoulder, and Hand (DASH); and 36-Item Short Form Health Survey (SF-36) physical component summary (PCS) and mental component summary (MCS) scores. Outcomes were assessed up to 48 months postoperatively.
RESULTS: Twenty-two patients with tetraplegia (median age, 36 years [range, 18-76 years]; 21 male [95%]) underwent 60 nerve transfers on 35 upper limbs at a median time of 21 months (range, 6-142 months) after SCI. At final follow-up, upper limb motor strength improved significantly: median MRC grades were 3 (IQR, 2.5-4; P = .01) for triceps, with 70% of upper limbs gaining an MRC grade of 3 or higher for elbow extension; 4 (IQR, 2-4; P \u3c .001) for finger extensors, with 79% of hands gaining an MRC grade of 3 or higher for finger extension; and 2 (IQR, 1-3; P \u3c .001) for finger flexors, with 52% of hands gaining an MRC grade of 3 or higher for finger flexion. The secondary outcomes of SHFT, MHQ, DASH, and SF36-PCS scores improved beyond the established minimal clinically important difference. Both early (\u3c12 months) and delayed (≥12 months) nerve transfers after SCI achieved comparable motor outcomes. Continual improvement in motor strength was observed in the finger flexors and extensors across the entire duration of follow-up.
CONCLUSIONS AND RELEVANCE: In this prospective case series, nerve transfer surgery was associated with improvement of upper limb motor strength and functional independence in patients with tetraplegia. Nerve transfer is a promising intervention feasible in both subacute and chronic SCI
0629
Clinicians caring for patients with brachial plexus and other nerve injuries must possess a clear understanding of the peripheral nervous system's response to trauma. In this article, the authors briefly review peripheral nerve injury (PNI) types, discuss the common injury classification schemes, and describe the dynamic processes of degeneration and reinnervation that characterize the PNI response. KEY WORDS • peripheral nerve • nerve injury • neurapraxia • axonotmesis • neurotmesis Neurosurg. Focus / Volume 16 / May, 2004 1 Abbreviations used in this paper: CNS = central nervous system; NGF = nerve growth factor; PNI = peripheral nerve injury
Bow hunter\u27s syndrome caused by accessory cervical ossification: posterolateral decompression and the use of intraoperative Doppler ultrasonography.
BACKGROUND: Bow hunter\u27s syndrome refers to symptomatic vertebrobasilar insufficiency provoked by physiologic head rotation.
CASE DESCRIPTION: We report a unique case of bow hunter\u27s syndrome caused by an accessory cervical ossification and the first use of intraoperative Doppler ultrasonography directly upon the vertebral artery during the surgical repair. After a traumatic motor-vehicle collision, the patient developed recurrent syncopal episodes when he turned his head abruptly to the right. Transcranial Doppler studies and vertebral angiography with the patient\u27s neck rotated into the symptomatic position revealed marked reduction of vertebral artery flow, and fine-cut CT of the upper cervical spine demonstrated the compressive accessory ossicle. Intraoperative Doppler ultrasound performed with the head in neutral and rotated positions, before and after surgical decompression, demonstrated restoration of blood flow in the vertebral artery. We discuss the mechanisms of bow hunter\u27s syndrome and the advantages of intraoperative Doppler ultrasonography.
CONCLUSION: This case describes the first use of intraoperative Doppler ultrasonography directly upon the vertebral artery to provide an unrestricted real-time assessment of the surgical decompression for bow hunter\u27s syndrome
Recommended from our members
Brachial plexus injury mimicking a spinal-cord injury.
Objective High-energy impact to the head, neck, and shoulder can result in cervical spine as well as brachial plexus injuries. Because cervical spine injuries are more common, this tends to be the initial focus for management. We present a case in which the initial magnetic resonance imaging (MRI) was somewhat misleading and a detailed neurological exam lead to the correct diagnosis.Clinical presentation A 19-year-old man presented to the hospital following a shoulder injury during football practice. The patient immediately complained of significant pain in his neck, shoulder, and right arm and the inability to move his right arm. He was stabilized in the field for a presumed cervical-spine injury and transported to the emergency department.Intervention Initial radiographic assessment (C-spine CT, right shoulder x-ray) showed no bony abnormality. MRI of the cervical-spine showed T2 signal change and cord swelling thought to be consistent with a cord contusion. With adequate pain control, a detailed neurological examination was possible and was consistent with an upper brachial plexus avulsion injury that was confirmed by CT myelogram. The patient failed to make significant neurological recovery and he underwent spinal accessory nerve grafting to the suprascapular nerve to restore shoulder abduction and external rotation, while the phrenic nerve was grafted to the musculocutaneous nerve to restore elbow flexion.Conclusion Cervical spinal-cord injuries and brachial plexus injuries can occur by the same high energy mechanisms and can occur simultaneously. As in this case, MRI findings can be misleading and a detailed physical examination is the key to diagnosis. However, this can be difficult in polytrauma patients with upper extremity injuries, head injuries or concomitant spinal-cord injury. Finally, prompt diagnosis and early surgical renerveration have been associated with better long-term recovery with certain types of injury
Brachial plexus injury mimicking a spinal-cord injury
Objective: High-energy impact to the head, neck, and shoulder can result in cervical spine as well as brachial plexus injuries. Because cervical spine injuries are more common, this tends to be the initial focus for management. We present a case in which the initial magnetic resonance imaging (MRI) was somewhat misleading and a detailed neurological exam lead to the correct diagnosis. Clinical presentation: A 19-year-old man presented to the hospital following a shoulder injury during football practice. The patient immediately complained of significant pain in his neck, shoulder, and right arm and the inability to move his right arm. He was stabilized in the field for a presumed cervical-spine injury and transported to the emergency department. Intervention: Initial radiographic assessment (C-spine CT, right shoulder x-ray) showed no bony abnormality. MRI of the cervical-spine showed T2 signal change and cord swelling thought to be consistent with a cord contusion. With adequate pain control, a detailed neurological examination was possible and was consistent with an upper brachial plexus avulsion injury that was confirmed by CT myelogram. The patient failed to make significant neurological recovery and he underwent spinal accessory nerve grafting to the suprascapular nerve to restore shoulder abduction and external rotation, while the phrenic nerve was grafted to the musculocutaneous nerve to restore elbow flexion. Conclusion: Cervical spinal-cord injuries and brachial plexus injuries can occur by the same high energy mechanisms and can occur simultaneously. As in this case, MRI findings can be misleading and a detailed physical examination is the key to diagnosis. However, this can be difficult in polytrauma patients with upper extremity injuries, head injuries or concomitant spinal-cord injury. Finally, prompt diagnosis and early surgical renerveration have been associated with better long-term recovery with certain types of injury
Neuropathological characteristics of brachial plexus avulsion injury with and without concomitant spinal cord injury
Neonatal brachial plexus avulsion injury (BPAI) commonly occurs as a consequence of birth trauma and can result in lifetime morbidity; however, little is known regarding the evolving neuropathological processes it induces. In particular, mechanical forces during BPAI can concomittantly damage the spinal cord and may contribute to outcome. Here, we describe the functional and neuropathological outcome following BPAI, with or without spinal cord injury, in a novel pediatric animal model. Twenty-eight-day-old piglets underwent unilateral C5–C7 BPAI with and without limited myelotomy. Following avulsion, all animals demonstrated right forelimb monoparesis. Injury extending into the spinal cord conferred greater motor deficit, including long tract signs. Consistent with clinical observations, avulsion with myelotomy resulted in more severe neuropathological changes with greater motor neuron death, progressive axonopathy, and persistent glial activation. These data demonstrate neuropathological features of BPAI associated with poor functional outcome. Interestingly, in contrast to adult small animal models of BPAI, a degree of motor neuron survival was observed, even following severe injury in this neonatal model. If this is also the case in human neonatal BPAI, repair may permit functional restoration. This model also provides a clinically relevant platform for exploring the complex postavulsion neuropathological responses that may inform therapeutic strategies
Long-Term Survival and Integration of Transplanted Engineered Nervous Tissue Constructs Promotes Peripheral Nerve Regeneration
Although peripheral nerve injury is a common consequence of trauma or surgery, there are insufficient means for repair. In particular, there is a critical need for improved methods to facilitate regeneration of axons across major nerve lesions. Here, we engineered transplantable living nervous tissue constructs to provide a labeled pathway to guide host axonal regeneration. These constructs consisted of stretch-grown, longitudinally aligned living axonal tracts inserted into poly(glycolic acid) tubes. The constructs (allogenic) were transplanted to bridge an excised segment of sciatic nerve in the rat, and histological analyses were performed at 6 and 16 weeks posttransplantation to determine graft survival, integration, and host regeneration. At both time points, the transplanted constructs were found to have maintained their pretransplant geometry, with surviving clusters of graft neuronal somata at the extremities of the constructs spanned by tracts of axons. Throughout the transplanted region, there was an intertwining plexus of host and graft axons, suggesting that the transplanted axons mediated host axonal regeneration across the lesion. By 16 weeks posttransplant, extensive myelination of axons was observed throughout the transplant region. Further, graft neurons had extended axons beyond the margins of the transplanted region, penetrating into the host nerve. Notably, this survival and integration of the allogenic constructs occurred in the absence of immunosuppression therapy. These findings demonstrate the promise of living tissue-engineered axonal constructs to bridge major nerve lesions and promote host regeneration, potentially by providing axon-mediated axonal outgrowth and guidance
Mineral volume and morphology in carotid plaque specimens using high-resolution MRI and CT
OBJECTIVE: High-resolution MRI methods have been used to evaluate carotid artery atherosclerotic plaque content. The purpose of this study was to assess the performance of high-resolution MRI in evaluation of the quantity and pattern of mineral deposition in carotid endarterectomy (CEA) specimens, with quantitative micro-CT as the gold standard. METHODS AND RESULTS: High-resolution MRI and CT were compared in 20 CEA specimens. Linear regression comparing mineral volumes generated from CT (V(CT)) and MRI (V(MRI)) data demonstrated good correlation using simple thresholding (V(MRI)=-0.01+0.98V(CT); R(2)=0.90; threshold=4×noise) and k-means clustering methods (V(MRI)=-0.005+1.38V(CT); R(2)=0.93). Bone mineral density (BMD) and bone mineral content (BMC [mineral mass]) were calculated for CT data and BMC verified with ash weight. Patterns of mineralization like particles, granules, and sheets were more clearly depicted on CT. CONCLUSIONS: Mineral volumes generated from MRI or CT data were highly correlated. CT provided a more detailed depiction of mineralization patterns and provided BMD and BMC in addition to mineral volume. The extent of mineralization as well as the morphology may ultimately be useful in assessing plaque stability