46 research outputs found

    No evidence of BRCA2 mutations in chromosome 13q-linked Utah high-risk prostate cancer pedigrees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Germline mutations in the <it>BRCA2 </it>gene have been suggested to account for about 5% of familial prostate cancer; mutations have been reported in 2% of early onset (i.e., ≤ 55 years) prostate cancer cases and a segregating founder mutation has been identified in Iceland (999del5). However, the role of <it>BRCA2 </it>in high risk prostate cancer pedigrees remains unclear.</p> <p>Findings</p> <p>We examined the potential involvement of <it>BRCA2 </it>in a set offive high-risk prostate cancer pedigrees in which all prostate cases were no more distantly related than two meioses from another case, and the resulting cluster contained at least four prostate cancer cases. We selected these five pedigrees from a larger dataset of 59 high-risk prostate cancer pedigrees analyzed in a genome-wide linkage screen. Selected pedigrees showed at least nominal linkage evidence to the <it>BRCA2 </it>region on chromosome 13q. We mutation screened all coding regions and intron/exon boundaries of the <it>BRCA2 </it>gene in the youngest prostate cancer case who carried the linked 13q segregating haplotype, as well as in a distantly related haplotype carrier to confirm any segregation. We observed no known protein truncating <it>BRCA2 </it>deleterious mutations. We identified one non-segregating <it>BRCA2 </it>variant of uncertain significance, one non-segregating intronic variant not previously reported, and a number of polymorphisms.</p> <p>Conclusion</p> <p>In this set of high-risk prostate cancer pedigrees with at least nominal linkage evidence to <it>BRCA2</it>, we saw no evidence for segregating <it>BRCA2 </it>protein truncating mutations in heritable prostate cancer.</p

    Association of FGFR4 genetic polymorphisms with prostate cancer risk and prognosis

    Get PDF
    The fibroblast growth factor receptor 4 (FGFR4) is thought to be involved in many critical cellular processes and has been associated with prostate cancer risk. Four single nucleotide polymorphisms within or near FGFR4 were analysed in a population-based study of 1458 prostate cancer patients and 1352 age-matched controls. We found no evidence to suggest that any of the FGFR4 SNP genotypes were associated with prostate cancer risk or with disease aggressiveness, Gleason score or stage. A weak association was seen between rs351855 and prostate cancer-specific mortality. Subset analysis of cases that had undergone radical prostatectomy revealed an association between rs351855 and prostate cancer risk. While our results confirm an association between FGFR4 and prostate cancer risk in radical prostatectomy cases, they suggest that the role of FGFR4 in disease risk and outcomes at a population-based level appears to be minor

    Targeted long-read sequencing of the Ewing sarcoma 6p25.1 susceptibility locus identifies germline-somatic interactions with EWSR1-FLI1 binding

    Get PDF
    Ewing sarcoma (EwS) is a rare bone and soft tissue malignancy driven by chromosomal translocations encoding chimeric transcription factors, such as EWSR1-FLI1, that bind GGAA motifs forming novel enhancers that alter nearby expression. We propose that germline microsatellite variation at the 6p25.1 EwS susceptibility locus could impact downstream gene expression and EwS biology. We performed targeted long-read sequencing of EwS blood DNA to characterize variation and genomic features important for EWSR1-FLI1 binding. We identified 50 microsatellite alleles at 6p25.1 and observed that EwS-affected individuals had longer alleles (>135 bp) with more GGAA repeats. The 6p25.1 GGAA microsatellite showed chromatin features of an EWSR1-FLI1 enhancer and regulated expression of RREB1, a transcription factor associated with RAS/MAPK signaling. RREB1 knockdown reduced proliferation and clonogenic potential and reduced expression of cell cycle and DNA replication genes. Our integrative analysis at 6p25.1 details increased binding of longer GGAA microsatellite alleles with acquired EWSR-FLI1 to promote Ewing sarcomagenesis by RREB1-mediated proliferation

    Comparison against 186 canid whole genome sequences reveals survival strategies of an ancient clonally transmissible canine tumor.

    Get PDF
    Canine transmissible venereal tumor (CTVT) is a parasitic cancer clone that has propagated for thousands of years via sexual transfer of malignant cells. Little is understood about the mechanisms that converted an ancient tumor into the world's oldest known continuously propagating somatic cell lineage. We created the largest existing catalog of canine genome-wide variation and compared it against two CTVT genome sequences, thereby separating alleles derived from the founder's genome from somatic drivers of clonal transmissibility. We show that CTVT has undergone continuous adaptation to its transmissible allograft niche, with overlapping mutations at every step of immunosurveillance, particularly self-antigen presentation and apoptosis. We also identified chronologically early somatic mutations in oncogenesis- and immune-related genes that may represent key initiators of clonal transmissibility. Thus, we provide the first insights into the specific genomic aberrations that underlie CTVT's dogged perseverance in canids around the world

    Female Chromosome X Mosaicism is Age-Related and Preferentially Affects the Inactivated X Chromosome

    Get PDF
    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events 4 2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases

    Low-frequency variation near common germline susceptibility loci are associated with risk of Ewing sarcoma

    Get PDF
    Background: Ewing sarcoma (EwS) is a rare, aggressive solid tumor of childhood, adolescence and young adulthood associated with pathognomonic EWSR1-ETS fusion oncoproteins altering transcriptional regulation. Genome-wide association studies (GWAS) have identified 6 common germline susceptibility loci but have not investigated low-frequency inherited variants with minor allele frequencies below 5% due to limited genotyped cases of this rare tumor. Methods We investigated the contribution of rare and low-frequency variation to EwS susceptibility in the largest EwS genome-wide association study to date (733 EwS cases and 1,346 unaffected controls of European ancestry). Results We identified two low-frequency variants, rs112837127 and rs2296730, on chromosome 20 that were associated with EwS risk (OR = 0.186 and 2.038, respectively;P-value < 5x10(-8)) and located near previously reported common susceptibility loci. After adjusting for the most associated common variant at the locus, only rs112837127 remained a statistically significant independent signal (OR = 0.200, P-value = 5.84x10(-8)). Conclusions: These findings suggest rare variation residing on common haplotypes are important contributors to EwS risk. Impact Motivate future targeted sequencing studies for a comprehensive evaluation of low-frequency and rare variation around common EwS susceptibility loci

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF
    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF
    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events42Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases
    corecore